No Arabic abstract
Perovskite oxides exhibit a plethora of exceptional electronic properties, providing the basis for novel concepts of oxide-electronic devices. The interest in these materials is even extended by the remarkable characteristics of their interfaces. Studies on single epitaxial connections between the two wide-bandgap insulators LaAlO3 and SrTiO3 have revealed them to be either high-mobility electron conductors or insulating, depending on the atomic stacking sequences. In the latter case they are conceivably positively charged. For device applications, as well as for basic understanding of the interface conduction mechanism, it is important to investigate the electronic coupling of closely-spaced complementary interfaces. Here we report the successful realization of such electronically coupled complementary interfaces in SrTiO3 - LaAlO3 thin film multilayer structures, in which the atomic stacking sequence at the interfaces was confirmed by quantitative transmission electron microscopy. We found a critical separation distance of 6 perovskite unit cell layers, corresponding to approximately 2.3 nm, below which a decrease of the interface conductivity and carrier density occurs. Interestingly, the high carrier mobilities characterizing the separate electron doped interfaces are found to be maintained in coupled structures down to sub-nanometer interface spacing.
The issue of the net charge at insulating oxide interfaces is shortly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge at such interfaces is defined by the counting of discrete electrons and core ion charges, and by the definition of the reference polarisation of the separate, unperturbed bulk materials. The arguments are illustrated for the case of a thin film of LaAlO$_3$ over SrTiO$_3$ in the absence of free carriers, for which the net charge is exactly 0.5$e$ per interface formula unit, if the polarisation response in both materials is referred to zero bulk values. Further consequences of the argument are extracted for structural and chemical alterations of such interfaces, in which internal rearrangements are distinguished from extrinsic alterations (changes of stoichiometry, redox processes), only the latter affecting the interfacial net charge. The arguments are reviewed alongside the proposal of Stengel and Vanderbilt [Phys. Rev. B {bf 80}, 241103 (2009)] of using formal polarisation values instead of net interfacial charges, based on the interface theorem of Vanderbilt and King-Smith [Phys. Rev. B {bf 48}, 4442 (1993)]. Implications for non-centrosymmetric materials are discussed, as well as for interfaces for which the charge mismatch is an integer number of polarisation quanta.
With their broad range of magnetic, electronic and structural properties, transition metal perovskite oxides ABO3 have long served as a platform for testing condensed matter theories. In particular, their insulating character - found in most compounds - is often ascribed to dynamical electronic correlations through the celebrated Mott-Hubbard mechanism where gaping arises from a uniform, symmetry-preserving electron repulsion mechanism. However, structural distortions are ubiquitous in perovskites and their relevance with respect to dynamical correlations in producing this rich array of properties remains an open question. Here, we address the origin of band gap opening in the whole family of 3d perovskite oxides. We show that a single-determinant mean-field approach such as density functional theory (DFT) successfully describes the structural, magnetic and electronic properties of the whole series, at low and high temperatures. We find that insulation occurs via energy-lowering crystal symmetry reduction (octahedral rotations, Jahn-Teller and bond disproportionation effects), as well as intrinsic electronic instabilities, all lifting orbital degeneracies. Our work therefore suggests that whereas ABO3 oxides may be complicated, they are not necessarily strongly correlated. It also opens the way towards systematic investigations of doping and defect physics in perovskites, essential for the full realization of oxide-based electronics.
We show that the growth of the heterostructure LaGaO3/SrTiO3 yields the formation of a highly conductive interface. Our samples were carefully analyzed by high resolution electron microscopy, in order to assess their crystal perfection and to evaluate the abruptness of the interface. Their carrier density and sheet resistance are compared to the case of LaAlO3/SrTiO3 and a superconducting transition is found. The results open the route to widening the field of polar-non polar interfaces, pose some phenomenological constrains to their underlying physics and highlight the chance of tailoring their properties for future applications by adopting suitable polar materials.
Using light to manipulate materials into desired states is one of the goals in condensed matter physics, since light control can provide ultrafast and environmentally-friendly photonics devices. However, it is generally difficult to realise a photo-induced phase which is not merely a higher entropy phase corresponding to a high-temperature phase at equilibrium. Here, we report realization of photo-induced insulator-to-metal transitions in Ta2Ni(Se1-xSx)5 including the excitonic insulator phase using time- and angle-resolved photoemission spectroscopy. From the dynamic properties of the system, we determine that screening of excitonic correlations plays a key role in the timescale of the transition to the metallic phase, which supports the existence of an excitonic-insulator phase at equilibrium. The non-equilibrium metallic state observed unexpectedly in the direct-gap excitonic insulator opens up a new avenue to optical band engineering in electron-hole coupled systems.
The main scientific activity in the field of topological insulators (TIs) consists of determining their electronic structure by means of magneto-transport and electron spectroscopy with a view to devices based on topological transport. There is however a caveat in this approach. There are systematic experimental discrepancies on the electronic structure of the most pristine surfaces of TI single crystals as determined by Shubnikov de Haas (SdH) oscillations and by Angle Resolved PhotoElectron Spectroscopy (ARPES). We identify intense ultraviolet illumination -that is inherent to an ARPES experiment- as the source for these experimental differences. We explicitly show that illumination is the key parameter, or in other words the trigger, for energetic shifts of electronic bands near the surface of a TI crystal. This finding revisits the common belief that surface decoration is the principal cause of surface band bending and explains why band bending is not a prime issue in the illumination-free magneto-transport studies. Our study further clarifies the role of illumination on the electronic band structure of TIs by revealing its dual effect: downward band bending on very small timescales followed by band flattening at large timescales. Our results therefore allow us to present and predict the complete evolution of the band structure of TIs in a typical ARPES experiment. By virtue of our findings, we pinpoint two alternatives of how to approach flat band conditions by means of photon-based techniques and we suggest a microscopic mechanism that can explain the underlying phenomena.