Do you want to publish a course? Click here

Electric field inversion asymmetry: Rashba and Stark effects for holes in resonant tunneling devices

73   0   0.0 ( 0 )
 Added by Gilmar Marques
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report experimental evidence of excitonic spin-splitting, in addition to the conventional Zeeman effect, produced by a combination of the Rashba spin-orbit interaction, Stark shift and charge screening. The electric-field-induced modulation of the spin-splitting are studied during the charging and discharging processes of p-type GaAs/AlAs double barrier resonant tunneling diodes (RTD) under applied bias and magnetic field. The abrupt changes in the photoluminescence, with the applied bias, provide information of the charge accumulation effects on the device.



rate research

Read More

93 - Han Yan , Zexin Feng , Peixin Qin 2021
In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach to achieving ultra-low power spintronic devices via suppressing Joule heating. In this article, cutting-edge research, including electric-field modulation of antiferromagnetic spintronic devices using strain, ionic liquids, dielectric materials, and electrochemical ionic migration, are comprehensively reviewed. Various emergent topics such as the Neel spin-orbit torque, chiral spintronics, topological antiferromagnetic spintronics, anisotropic magnetoresistance, memory devices, two-dimensional magnetism, and magneto-ionic modulation with respect to antiferromagnets are examined. In conclusion, we envision the possibility of realizing high-quality room-temperature antiferromagnetic tunnel junctions, antiferromagnetic spin logic devices, and artificial antiferromagnetic neurons. It is expected that this work provides an appropriate and forward-looking perspective that will promote the rapid development of this field.
Over the past years, transition metal dichalcogenides (TMDs) have attracted attention as potential building blocks for various electronic applications due to their atomically thin nature. An exciting development is the recent success in engineering crystal phases of TMD compounds during the growth due to their polymorphic character. Here, we report an electric field induced reversible engineered phase transition in vertical 2H-MoTe2 devices, a crucial experimental finding that enables electrical phase switching for these ultra-thin layered materials. Scanning tunneling microscopy (STM) was utilized to analyze the TMD crystalline structure after applying an electric field, and scanning tunneling spectroscopy (STS) was employed to map a semiconductor-to-metal phase transition on the nanoscale. In addition, direct confirmation of a phase transition from 2H semiconductor to a distorted 2H metallic phase was obtained by scanning transmission electron microscopy (STEM). MoTe2 and Mo1-xWxTe2 alloy based vertical resistive random access memory (RRAM) cells were fabricated to demonstrate clear reproducible and controlled switching with programming voltages that are tunable by the layer thickness and that show a distinctly different trend for the binary compound if compared to the ternary materials.
We demonstrate pronounced electric-field-induced second-harmonic generation in naturally inversion symmetric 2H stacked bilayer MoS$_{2}$ embedded into microcapacitor devices. By applying strong external electric field perturbations ($|F| = pm 2.6 MVcm^{-1}$) perpendicular to the basal plane of the crystal we control the inversion symmetry breaking and, hereby, tune the nonlinear conversion efficiency. Strong tunability of the nonlinear response is observed throughout the energy range ($E_{omega} sim 1.25 eV - 1.47 eV$) probed by measuring the second-harmonic response at $E_{2omega}$, spectrally detuned from both the A- and B-exciton resonances. A 60-fold enhancement of the second-order nonlinear signal is obtained for emission at $E_{2omega} = 2.49 eV$, energetically detuned by $Delta E = E_{2omega} - E_C = -0.26 eV$ from the C-resonance ($E_{C} = 2.75 eV$). The pronounced spectral dependence of the electric-field-induced second-harmonic generation signal reflects the bandstructure and wave function admixture and exhibits particularly strong tunability below the C-resonance, in good agreement with Density Functional Theory calculations. Moreover, we show that the field-induced second-harmonic generation relies on the interlayer coupling in the bilayer. Our findings strongly suggest that the strong tunability of the electric-field-induced second-harmonic generation signal in bilayer transition metal dichalcogenides may find applications in miniaturized electrically switchable nonlinear devices.
139 - M.M. Glazov , S.D. Ganichev 2013
The nonlinear optical and optoelectronic properties of graphene with the emphasis on the processes of harmonic generation, frequency mixing, photon drag and photogalvanic effects as well as generation of photocurrents due to coherent interference effects, are reviewed. The article presents the state-of-the-art of this subject, including both recent advances and well-established results. Various physical mechanisms controlling transport are described in depth including phenomenological description based on symmetry arguments, models visualizing physics of nonlinear responses, and microscopic theory of individual effects.
218 - F. T. Vasko 2012
The tunneling current between independently contacted graphene sheets separated by boron nitride insulator is calculated. Both dissipative tunneling transitions, with momentum transfer due to disorder scattering, and non-dissipative regime of tunneling, which appears due to intersection of electron and hole branches of energy spectrum, are described. Dependencies of tunneling current on concentrations in top and bottom graphene layers, which are governed by the voltages applied through independent contacts and gates, are considered for the back- and double-gated structures. The current-voltage characteristics of the back-gated structure are in agreement with the recent experiment [Science 335, 947 (2012)]. For the double-gated structures, the resonant dissipative tunneling causes a ten times enhancement of response which is important for transistor applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا