Do you want to publish a course? Click here

Electric-field switchable second-harmonic generation in bilayer MoS$_{2}$ by inversion symmetry breaking

131   0   0.0 ( 0 )
 Added by Julian Klein
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate pronounced electric-field-induced second-harmonic generation in naturally inversion symmetric 2H stacked bilayer MoS$_{2}$ embedded into microcapacitor devices. By applying strong external electric field perturbations ($|F| = pm 2.6 MVcm^{-1}$) perpendicular to the basal plane of the crystal we control the inversion symmetry breaking and, hereby, tune the nonlinear conversion efficiency. Strong tunability of the nonlinear response is observed throughout the energy range ($E_{omega} sim 1.25 eV - 1.47 eV$) probed by measuring the second-harmonic response at $E_{2omega}$, spectrally detuned from both the A- and B-exciton resonances. A 60-fold enhancement of the second-order nonlinear signal is obtained for emission at $E_{2omega} = 2.49 eV$, energetically detuned by $Delta E = E_{2omega} - E_C = -0.26 eV$ from the C-resonance ($E_{C} = 2.75 eV$). The pronounced spectral dependence of the electric-field-induced second-harmonic generation signal reflects the bandstructure and wave function admixture and exhibits particularly strong tunability below the C-resonance, in good agreement with Density Functional Theory calculations. Moreover, we show that the field-induced second-harmonic generation relies on the interlayer coupling in the bilayer. Our findings strongly suggest that the strong tunability of the electric-field-induced second-harmonic generation signal in bilayer transition metal dichalcogenides may find applications in miniaturized electrically switchable nonlinear devices.



rate research

Read More

Second harmonic generation (SHG) is a fundamental nonlinear optical phenomenon widely used both for experimental probes of materials and for application to optical devices. Even-order nonlinear optical responses including SHG generally require breaking of inversion symmetry, and thus have been utilized to study noncentrosymmetric materials. Here, we study theoretically the SHG in inversion-symmetric Dirac and Weyl semimetals under a DC current which breaks the inversion symmetry by creating a nonequilibrium steady state. Based on analytic and numerical calculations, we find that Dirac and Weyl semimetals exhibit strong SHG upon application of finite current. Our experimental estimation for a Dirac semimetal Cd$_3$As$_2$ and a magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ suggests that the induced susceptibility $chi^{(2)}$ for practical applied current densities can reach $10^5~mathrm{pm}cdotmathrm{V}^{-1}$ with mid-IR or far-IR light. This value is 10$^2$-10$^4$ times larger than those of typical nonlinear optical materials. We also discuss experimental approaches to observe the current-induced SHG and comment on current-induced SHG in other topological semimetals in connection with recent experiments.
148 - Tatsuhiko N. Ikeda 2019
Manipulating spin currents in magnetic insulators is a key technology in spintronics. We theoretically study a simple inversion-asymmetric model of quantum antiferromagnets, where both the exchange interaction and the magnetic field are staggered. We calculate spin currents generated by external electric and magnetic fields by using a quantum master equation. We show that an ac electric field with amplitude $E_0$ leads, through exchange-interaction modulation, to the dc and second-harmonic spin currents proportional to $E_0^2$. We also show that dc and ac staggered magnetic fields $B_0$ generate the dc and ac spin currents proportional to $B_0$, respectively. We elucidate the mechanism by an exactly solvable model, and thereby propose the ways of spin current manipulation by electromagnetic fields.
199 - Wang Yao , Di Xiao , 2008
Inversion symmetry breaking allows contrasted circular dichroism in different k-space regions, which takes the extreme form of optical selection rules for interband transitions at high symmetry points. In materials where band-edges occur at noncentral valleys, this enables valley dependent interplay of electrons with light of different circular polarizations, in analogy to spin dependent optical activities in semiconductors. This discovery is in perfect harmony with the previous finding of valley contrasted Bloch band features of orbital magnetic moment and Berry curvatures from inversion symmetry breaking [Phys. Rev. Lett. 99, 236809 (2007)]. A universal connection is revealed between the k-resolved optical oscillator strength of interband transitions, the orbital magnetic moment and the Berry curvatures, which also provides a principle for optical measurement of orbital magnetization and intrinsic anomalous Hall conductivity in ferromagnetic systems. The general physics is demonstrated in graphene where inversion symmetry breaking leads to valley contrasted optical selection rule for interband transitions. We discuss graphene based valley optoelectronics applications where light polarization information can be interconverted with electronic information.
488 - L.E. Golub , S.A. Tarasenko 2014
The valley degeneracy of electron states in graphene stimulates intensive research of valley-related optical and transport phenomena. While many proposals on how to manipulate valley states have been put forward, experimental access to the valley polarization in graphene is still a challenge. Here, we develop a theory of the second optical harmonic generation in graphene and show that this effect can be used to measure the degree and sign of the valley polarization. We show that, at the normal incidence of radiation, the second harmonic generation stems from imbalance of carrier populations in the valleys. The effect has a specific polarization dependence reflecting the trigonal symmetry of electron valley and is resonantly enhanced if the energy of incident photons is close to the Fermi energy.
349 - C. Vaswani , C. Sundahl , M. Mootz 2019
We report terahertz (THz) second harmonic generation (SHG) in superconductors (SC) with inversion symmetric equilibrium states that forbid even-order nonlinearities. Such SHG signal is observed in single-pulse emission by periodic driving with a multi-cycle THz electric field tuned below the SC energy gap and vanishes above the SC critical temperature. We explain the microscopic physics by a dynamical symmetry breaking principle at sub-THz-cycle by using quantum kinetic modeling of the interplay between strong THz-lightwave nonlinearity and pulse propagation. The resulting non-zero integrated pulse area inside the SC drives lightwave nonlinear supercurrents due to sub--cycle Cooper pair acceleration, in contrast to d.c.-biased superconductors, which can be controlled by the bandstructure and the THz pump field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا