Do you want to publish a course? Click here

Experimental evidence of s-wave superconductivity in bulk CaC$_{6}$

90   0   0.0 ( 0 )
 Added by Gianrico Lamura Dr
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The temperature dependence of the in-plane magnetic penetration depth, $lambda_{ab}(T)$, has been measured in a c-axis oriented polycrystalline CaC$_{6}$ bulk sample using a high-resolution mutual inductance technique. A clear exponential behavior of $lambda_{ab}(T)$ has been observed at low temperatures, strongly suggesting isotropic s-wave pairing. Data fit using the standard BCS theory yields $lambda_{ab}(0)=(720pm 80)$ Angstroem and $Delta(0)=(1.79pm 0.08)$ meV. The ratio $2Delta(0)/k_{_B}T_{c}=(3.6pm 0.2)$ gives indication for a conventional weakly coupled superconductor.



rate research

Read More

The intercalated graphite superconductor CaC6 with Tc ~ 11.5 K has been synthesized and characterized with magnetoresistance measurements. Above the transition, the resistivity follows a T^2 dependence up to 50 K, which suggests Fermi liquid behavior. Above 50 K, the data can be fit to the Bloch-Gruneisen model providing a Debye temperature of theta = 263 K. By using McMillan formula, we estimate the electron-phonon coupling constant of lambda = 0.85 which places this material in the intermediate-coupling regime. The upper critical field is determined parallel and perpendicular to the superconducting planes, and the dependence of the upper critical field as a function of angle suggests that this is a quasi-2D superconductivity. All of these measurements are consistent with BCS-like superconductivity.
We measured the temperature dependence of the magnetic penetration depth of La3Pd4Si4 down to 0.02 Tc. We observe a temperature-independent behaviour below 0.25 Tc, which is firm evidence for a nodeless superconducting gap in this material. The data display a very small anomaly around 1 K which we attribute to the possible presence of a superconducting impurity phase. The superfluid density is well described by a two-phase model, considering La3Pd4Si4 and the impurity phase. The present analysis suggests that the superconducting energy gap of La3Pd4Si4 is isotropic, as expected for conventional BCS superconductors.
To clarify the order parameter symmetry of cuprates, the magnetic penetration depth $lambda$ was measured along the crystallographic directions $a$, $b$, and $c$ in single crystals of YBa$_2$Cu$_4$O$_8$ via muon spin rotation. This method is direct, bulk sensitive, and unambiguous. The temperature dependences of $lambda_a^{-2}$ and $lambda_b^{-2}$ exhibit an inflection point at low temperatures as is typical for two-gap superconductivity (TGS) with $s+d-$wave character in the planes. Perpendicular to the planes a pure s-wave gap is observed thereby highlighting the important role of c-axis effects. We conclude that these are generic and universal features in the bulk of cuprates.
84 - B. Li , C. Q. Xu , W. Zhou 2017
Superconductivity in noncentrosymmetric compounds has attracted sustained interest in the last decades. Here we present a detailed study on the transport, thermodynamic properties and the band structure of the noncentrosymmetric superconductor La$_7$Ir$_3$ ($T_c$ $sim$2.3 K) that was recently proposed to break the time-reversal symmetry. It is found that La$_7$Ir$_3$ displays a moderately large electronic heat capacity (Sommerfeld coefficient $gamma_n$ $sim$ 53.1 mJ/mol $text{K}^2$) and a significantly enhanced Kadowaki-Woods ratio (KWR $sim$ 32 $muOmega$ cm mol$^2$ K$^2$ J$^{-2}$) that is greater than the typical value ($sim$ 10 $muOmega$ cm mol$^2$ K$^2$ J$^{-2}$) for strongly correlated electron systems. The upper critical field $H_{c2}$ was seen to be nicely described by the single-band Werthamer-Helfand-Hohenberg model down to very low temperatures. The hydrostatic pressure effects on the superconductivity were also investigated. The heat capacity below $T_c$ reveals a dominant s-wave gap with the magnitude close to the BCS value. The first-principles calculations yield the electron-phonon coupling constant $lambda$ = 0.81 and the logarithmically averaged frequency $omega_{ln}$ = 78.5 K, resulting in a theoretical $T_c$ = 2.5 K, close to the experimental value. Our calculations suggest that the enhanced electronic heat capacity is more likely due to electron-phonon coupling, rather than the electron-electron correlation effects. Collectively, these results place severe constraints on any theory of exotic superconductivity in this system.
We report the results of 87Rb NMR measurements on RbOs2O6, a new member of the family of the superconducting pyrochlore-type oxides with a critical temperature Tc = 6.4 K. In the normal state, the nuclear spin-lattice relaxation time T1 obeys the Korringa-type relation T1T = constant and the Knight shift is independent of temperature, indicating the absence of strong magnetic correlations. In the superconducting state, T1^{-1}(T) exhibits a tiny coherence enhancement just below Tc, and decreases exponentially with further decreasing temperatures. The value of the corresponding energy gap is close to that predicted by the conventional weak-coupling BCS theory. Our results indicate that RbOs2O6 is a conventional s-wave-type superconductor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا