No Arabic abstract
We report the results of 87Rb NMR measurements on RbOs2O6, a new member of the family of the superconducting pyrochlore-type oxides with a critical temperature Tc = 6.4 K. In the normal state, the nuclear spin-lattice relaxation time T1 obeys the Korringa-type relation T1T = constant and the Knight shift is independent of temperature, indicating the absence of strong magnetic correlations. In the superconducting state, T1^{-1}(T) exhibits a tiny coherence enhancement just below Tc, and decreases exponentially with further decreasing temperatures. The value of the corresponding energy gap is close to that predicted by the conventional weak-coupling BCS theory. Our results indicate that RbOs2O6 is a conventional s-wave-type superconductor.
Two beta-pyrochlore oxide superconductors, CsOs2O6 and RbOs2O6, are studied thermodynamically by measuring specific heat on polycrystalline samples. It is found that a Sommerfeld coefficient ? is nearly equal, 20 mJ/K2 mol Os, in the two oxides with different superconducting transition temperatures; Tc = 3.3 K and 6.3 K, respectively. This suggests that the density of states at the Fermi level is not a crucial parameter to determine the Tc of the beta-pyrochlore oxide superconductors, which is incompatible with the general expectation for a conventional BCS-type superconductor. Anomalous lattice contributions to specific heat at low temperature are also reported, which may come from nearly localized phonon modes associated with the rattling of the alkali metal ions weakly bound in an oversized cage formed by OsO6 octahedra.
Superconductivity in noncentrosymmetric compounds has attracted sustained interest in the last decades. Here we present a detailed study on the transport, thermodynamic properties and the band structure of the noncentrosymmetric superconductor La$_7$Ir$_3$ ($T_c$ $sim$2.3 K) that was recently proposed to break the time-reversal symmetry. It is found that La$_7$Ir$_3$ displays a moderately large electronic heat capacity (Sommerfeld coefficient $gamma_n$ $sim$ 53.1 mJ/mol $text{K}^2$) and a significantly enhanced Kadowaki-Woods ratio (KWR $sim$ 32 $muOmega$ cm mol$^2$ K$^2$ J$^{-2}$) that is greater than the typical value ($sim$ 10 $muOmega$ cm mol$^2$ K$^2$ J$^{-2}$) for strongly correlated electron systems. The upper critical field $H_{c2}$ was seen to be nicely described by the single-band Werthamer-Helfand-Hohenberg model down to very low temperatures. The hydrostatic pressure effects on the superconductivity were also investigated. The heat capacity below $T_c$ reveals a dominant s-wave gap with the magnitude close to the BCS value. The first-principles calculations yield the electron-phonon coupling constant $lambda$ = 0.81 and the logarithmically averaged frequency $omega_{ln}$ = 78.5 K, resulting in a theoretical $T_c$ = 2.5 K, close to the experimental value. Our calculations suggest that the enhanced electronic heat capacity is more likely due to electron-phonon coupling, rather than the electron-electron correlation effects. Collectively, these results place severe constraints on any theory of exotic superconductivity in this system.
Superconducting and normal-state properties of the beta-pyrochlore oxide KOs2O6 are studied by means of thermodynamic and transport measurements. It is shown that the superconductivity is of conventional s-wave type and lies in the extremely strong-coupling regime. Specific heat and resistivity measurements reveal that there are characteristic low-energy phonons that give rise to unusual scattering of carriers due to strong electron-phonon interactions. The entity of the low-energy phonons is ascribed to the heavy rattling of the K ion confined in an oversized cage made of OsO6 octahedra. It is suggested that this electron-rattler coupling mediates the Cooper pairing, resulting in the extremely strong-coupling superconductivity.
Resistivity and specific heat have been measured on a single crystalline sample of the beta-pyrochlore oxide superconductor, KOs2O6. It is found that a second peak in specific heat, which may evidence an unknown phase transition, appears around Tp ~ 7.5 K below the superconducting transition temperature Tc = 9.53 K. Applying magnetic fields up to 14 T, Tc is reduced gradually down to 7.1 K, while Tp is raised a little and becomes even higher than Tc at 14 T, which implies that the second anomaly is not associated directly with the superconductivity. It is demonstrated, however, that there is significant communication between the two anomalies, suggesting that they come from the same electrons. It is also reported that the Sommerfeld coefficient ? in KOs2O6 is possibly much larger than in other members of beta-pyrochlore oxide superconductors, RbOs2O6 (Tc = 6.3 K) and CsOs2O6 (Tc = 3.3 K).
We measured the temperature dependence of the magnetic penetration depth of La3Pd4Si4 down to 0.02 Tc. We observe a temperature-independent behaviour below 0.25 Tc, which is firm evidence for a nodeless superconducting gap in this material. The data display a very small anomaly around 1 K which we attribute to the possible presence of a superconducting impurity phase. The superfluid density is well described by a two-phase model, considering La3Pd4Si4 and the impurity phase. The present analysis suggests that the superconducting energy gap of La3Pd4Si4 is isotropic, as expected for conventional BCS superconductors.