Do you want to publish a course? Click here

Anomalous Magnetic and Thermal Behavior in Some RMn2O5 Oxides

52   0   0.0 ( 0 )
 Added by Chien-Lung Huang
 Publication date 2005
  fields Physics
and research's language is English
 Authors C. L. Huang




Ask ChatGPT about the research

The RMn2O5 (R=Pr, Nd, Sm, and Eu) oxides showing magnetoelectric (ME) behavior have been prepared in polycrystalline form by a standard citrate route. The lattice parameters, obtained from the powder XRD analysis, follow the rare-earth contraction indicating the trivalent character of the R ions. Cusp-like anomalies in the magnetic susceptibility curve and sharp peaks in the specific heat were reported at the corresponding temperatures in RMn2O5 (R=Pr, Nd, Sm, and Eu) indicating the magnetic or electric ordering transitions.



rate research

Read More

We have used soft x-ray photoemission electron microscopy to image the magnetization of single domain La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ nano-islands arranged in geometrically frustrated configurations such as square ice and kagome ice geometries. Upon thermal randomization, ensembles of nano-islands with strong inter-island magnetic coupling relax towards low-energy configurations. Statistical analysis shows that the likelihood of ensembles falling into low-energy configurations depends strongly on the annealing temperature. Annealing to just below the Curie temperature of the ferromagnetic film (T$_{C}$ = 338 K) allows for a much greater probability of achieving low energy configurations as compared to annealing above the Curie temperature. At this thermally active temperature of 325 K, the ensemble of ferromagnetic nano-islands explore their energy landscape over time and eventually transition to lower energy states as compared to the frozen-in configurations obtained upon cooling from above the Curie temperature. Thus, this materials system allows for a facile method to systematically study thermal evolution of artificial spin ice arrays of nano-islands at temperatures modestly above room temperature.
Single crystals of KSbO3-type rhenium oxides, La4Re6O$19, Pb6Re6O19, Sr2Re3O9 and Bi3Re3O11, were synthesized by a hydrothermal method. Their crystal structures can be regarded as a network of three-dimensional orthogonal-dimer lattice of edge-shared ReO6 octahedra. All of them exhibit small magnitude of Pauli paramagnetism, indicating metallic electronic states without strong electron correlations. The resistivity of these rhenates, except Bi3Re3O11, have a temperature dependence of $rho(T)=rho_{0}+AT^{n}$ $(n approx 1.6)$ in a wide temperature range between 5 K and 300 K, which is extraordinary for three-dimensional metals without strong electron correlations. The resistivity of Bi3Re3O11 shows an anomaly around at 50 K, where the magnetic susceptibility also detects a deviation from ordinary Pauli paramagnetism.
We have studied a mosaic of 1T-CrSe$_2$ single crystals using $beta$-detected nuclear magnetic resonance of $^{8}$Li from 4 to 300 K. We identify two broad resonances that show no evidence of quadrupolar splitting, indicating two magnetically distinct environments for the implanted ion. We observe stretched exponential spin lattice relaxation and a corresponding rate ($1/T_1$) that increases monotonically above 200 K, consistent with the onset of ionic diffusion. A pronounced maximum in $1/T_1$ is observed at the low temperature magnetic transition near 20 K. Between these limits, $1/T_1$ instead exhibits a broad minimum with a remarkable absence of strong features in the vicinity of structural and magnetic transitions between 150 and 200 K. Together, the results suggest $^{8}$Li$^{+}$ site occupation within the van der Waals gap between CrSe$_2$ trilayers. Possible origins of the two environments are discussed.
In this paper we report successful synthesis and magnetic properties of (Ca,Na)(Zn,Mn)2Sb2 as a new ferromagnetic dilute magnetic semiconductor (DMS). In this DMS material the concentration of magnetic moments can be controlled independently from the concentration of electric charge carriers that are required for mediating magnetic interactions between these moments. This feature allows us to separately investigate the effect of carriers and of spins on the ferromagnetic properties of this new DMS alloy, and particularly of the critical ferromagnetic behavior. We use modified Arrott plot technique to establish critical exponents b, g, and d of this alloy. We find that at low Mn concentrations (< 10 at.%), it is governed by short-range 3D-Ising behavior, with experimental values of b, g, and d very close to theoretical 3D-Ising values of 0.325, 1.24, and 4.815. However, as the Mn concentration increases, this DMS material exhibits a mixed-phase behavior, with g retaining its 3D-Ising characteristics, but b crossing over to longer-range mean-field behavior.
We perform a theoretical study of the magnetism induced in transition metal dioxides ZrO2 and TiO2 by substitution of the cation by a vacancy or an impurity from the groups 1A or 2A of the periodic table, where the impurity is either K or Ca. In the present study both supercell and embedded cluster methods are used. It is demonstrated that the vacancy and the K-impurity leads to a robust induced magnetic moment on the surrounding O-atoms for both the cubic ZrO2 and rutile TiO2 host crystals. On the other hand it is shown that Ca-impurity leads to a non magnetic state. The native O-vacancy does not induce a magnetic moment in the host dioxide crystal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا