Do you want to publish a course? Click here

Reduction of threshold current density for current-driven domain wall motion by shape control

116   0   0.0 ( 0 )
 Added by Akinobu Yamaguchi
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the aspect ratio (thickness/width) dependence of the threshold current density required for the current-driven domain wall (DW) motion for the Ni81Fe19 nanowires. It has been shown theoretically that the threshold current density is proportional to the product of the hard-axis magnetic anisotropy Kperp and the DW width lamda. (Phys. Rev. Lett. 92, 086601 (2004).) We show experimentally that Kperp can be controlled by the magnetic shape anisotropy in the case of the Ni81Fe19 nanowires, and that the threshold current density increases with an increase of Kperp*l. We succeeded to reduce the threshold current density by half by the shape control.



rate research

Read More

It was found that high current density needed for the current-driven domain wall motion results in the Joule heating of the sample. The sample temperature, when the current-driven domain wall motion occurred, was estimated by measuring the sample resistance during the application of a pulsed-current. The sample temperature was 750 K for the threshold current density of 6.7 x 10^11 A/m2 in a 10 nm-thick Ni81Fe19 wire with a width of 240 nm. The temperature was raised to 830 K for the current density of 7.5 x 10^11 A/m2, which is very close to the Curie temperature of bulk Ni81Fe19. When the current density exceeded 7.5 x 10^11 A/m2, an appearance of a multi-domain structure in the wire was observed by magnetic force microscopy, suggesting that the sample temperature exceeded the Curie temperature.
In order to explain recent experiments reporting a motion of magnetic domain walls (DW) in nanowires carrying a current, we propose a modification of the spin transfer torque term in the Landau-Lifchitz-Gilbert equation. We show that it explains, with reasonable parameters, the measured DW velocities as well as the variation of DW propagation field under current. We also introduce coercivity by considering rough wires. This leads to a finite DW propagation field and finite threshold current for DW propagation, hence we conclude that threshold currents are extrinsic. Some possible models that support this new term are discussed.
Current-driven magnetic domain wall motion is demonstrated in the quaternary ferromagnetic semiconductor (Ga,Mn)(As,P) at temperatures well below the ferromagnetic transition temperature, with critical currents of the order 10^5Acm^-2. This is enabled by a much weaker domain wall pinning compared to (Ga,Mn)As layers grown on a strain-relaxed buffer layer. The critical current is shown to be comparable with theoretical predictions. The wide temperature range over which domain wall motion can be achieved indicates that this is a promising system for developing an improved understanding of spin-transfer torque in systems with strong spin-orbit interaction.
Spin-polarized electric current exerts torque on local magnetic spins, resulting in magnetic domain-wall (DW) motion in ferromagnetic nanowires. Such current-driven DW motion opens great opportunities toward next-generation magnetic devices controlled by current instead of magnetic field. However, the nature of the current-driven DW motion--considered qualitatively different from magnetic-field-driven DW motion--remains yet unclear mainly due to the painfully high operation current densities J_OP, which introduce uncontrollable experimental artefacts with serious Joule heating. It is also crucial to reduce J_OP for practical device operation. By use of metallic Pt/Co/Pt nanowires with perpendicular magnetic anisotropy, here we demonstrate DW motion at current densities down to the range of 10^9 A/m^2--two orders smaller than existing reports. Surprisingly the current-driven motion exhibits a scaling behaviour identical to the field-driven motion and thus, belongs to the same universality class despite their qualitative differences. Moreover all DW motions driven by either current or field (or by both) collapse onto a single curve, signalling the unification of the two driving mechanisms. The unified law manifests non-vanishing current efficiency at low current densities down to the practical level, applicable to emerging magnetic nanodevices.
Deterministic control of domain walls orthogonal to the direction of current flow is demonstrated by exploiting spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO multilayer in presence of an in-plane magnetic field. Notably, such orthogonal motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. From these measurements, which are unaffected by any conventional spin transfer torque by symmetry, we estimate the spin orbit torque efficiency of Ta to be 0.08.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا