We report the first experimental observation of the two-node thickness dependence of the critical current in Josephson junctions with a ferromagnetic interlayer. Vanishings of the critical current correspond to transitions into pi-state and back into conventional 0-state. The experimental data allow to extract the superconducting order parameter oscillation period and the pair decay length in the ferromagnet. We develope a theoretical approach based on Usadel equations, which takes into account the spin-flip scattering. Results of numerical calculations are in good agreement with the experimental data.
The magnetic and transport properties of $Pd_{0.99}Fe_{0.01}$ thin films have been studied. We have found that the Curie temperature of the films is about 20 K and the magnetic properties strongly depend on temperature below $T_{Curie}$. We have also fabricated the set of superconductor-ferromagnet-superconductor josephson junctions $Nb-PdFe-Nb$. The temperature dependence of the junctions with the ferromagnet layer thickness of about 36 nm shows the reentrant behaviour that is the evidence of the transition of the junction into the $pi$-state.
In this work, we show fundamental low temperature (T) magnetic and Ic responses of a magnetic Josephson Junction (MJJ) S/F/S heterostructure - Nb/ Co56Fe24B20 /Nb. The ultra-thin Co56Fe24B20 (CFB) films (0.6-1.3 nm) were deposited onto two separate buffer layers: 150 nm Nb/5 nm Cu and 150 nm Nb/ (1 nm Cu/0.5 nm Nb)6/1 nm Cu. Both film sets were capped with 5 nm Cu/50 nm Nb. Magnetic results show reduced switching distributions in patterned arrays measured at near liquid Helium temperature (~ 10 K), with the incorporation of the (1 nm Cu/0.5 nm Nb)6/1 nm multilayer. In electrical devices, the critical current (Ic) through the CFB layer decays exponentially with increasing ferromagnetic layer thickness and shows a dip in Ic at 0.8 nm, characteristic of a change in the equilibrium Josephson phase in an S/F/S structure.
We propose a novel type of magnetic scanning probe sensor, based on a single planar Josephson junction with a magnetic barrier. The planar geometry together with high magnetic permeability of the barrier helps to focus flux in the junction and thus enhance the sensitivity of the sensor. As a result, it may outperform equally sized SQUID both in terms of the magnetic field sensitivity and the spatial resolution in one scanning direction. We fabricate and analyze experimentally sensor prototypes with a superparamagnetic CuNi and a ferromagnetic Ni barrier. We demonstrate that the planar geometry allows easy miniaturization to nm-scale, facilitates an effective utilization of the self-field phenomenon for amplification of sensitivity and a simple implementation of a control line for feed-back operation in a broad dynamic range.
Three-dimensional topological insulators (TIs) in proximity with superconductors are expected to exhibit exotic phenomena such as topological superconductivity (TSC) and Majorana bound states (MBS), which may have applications in topological quantum computation. In superconductor-TI-superconductor Josephson junctions, the supercurrent versus the phase difference between the superconductors, referred to as the current-phase relation (CPR), reveals important information including the nature of the superconducting transport. Here, we study the induced superconductivity in gate-tunable Josephson junctions (JJs) made from topological insulator BiSbTeSe2 with superconducting Nb electrodes. We observe highly skewed (non-sinusoidal) CPR in these junctions. The critical current, or the magnitude of the CPR, increases with decreasing temperature down to the lowest accessible temperature (T ~ 20 mK), revealing the existence of low-energy modes in our junctions. The gate dependence shows that close to the Dirac point the CPR becomes less skewed, indicating the transport is more diffusive, most likely due to the presence of electron/hole puddles and charge inhomogeneity. Our experiments provide strong evidence that superconductivity is induced in the highly ballistic topological surface states (TSS) in our gate-tunable TI- based JJs. Furthermore, the measured CPR is in good agreement with the prediction of a model which calculates the phase dependent eigenstate energies in our system, considering the finite width of the electrodes as well as the TSS wave functions extending over the entire circumference of the TI.
We study theoretically the effects of interfacial Rashba and Dresselhaus spin-orbit coupling in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions---with allowing for tunneling barriers between the layers---by solving the Bogoljubov-de Gennes equation for a realistic heterostructure and applying the Furusaki-Tsukada technique to calculate the electric current at a finite temperature. The presence of spin-orbit couplings leads to out- and in-plane magnetoanisotropies of the Josephson current, which are giant in comparison to current magnetoanisotropies in similar normal-state ferromagnet/normal metal (F/N) junctions. Especially huge anisotropies appear in the vicinity of $ 0 $-$ pi $ transitions, caused by the exchange-split bands in the ferromagnetic metal layer. We also show that the direction of the Josephson critical current can be controlled (inducing $ 0 $-$ pi $ transitions) by the strength of the spin-orbit coupling and, more crucial, by the orientation of the magnetization. Such a control can bring new functionalities into Josephson junction devices.
V. A. Oboznov
,V.V. Bolginov
,A. K. Feofanov
.
(2005)
.
"Double-reversal thickness dependence of critical current in superconductor-ferromagnet-superconductor Josephson junctions"
.
Vitaly Bolginov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا