We derive a master equation for a driven double-dot damped by an unstructured phonon bath, and calculate the spectral density. We find that bath mediated photon absorption is important at relatively strong driving, and may even dominate the dynamics, inducing population inversion of the double dot system. This phenomenon is consistent with recent experimental observations.
The decoherence of mixed electron-nuclear spin qubits is a topic of great current importance, but understanding is still lacking: while important decoherence mechanisms for spin qubits arise from quantum spin bath environments with slow decay of correlations, the only analytical framework for explaining observed sharp variations of decoherence times with magnetic field is based on the suppression of classical noise. Here we obtain a general expression for decoherence times of the central spin system which exposes significant differences between quantum-bath decoherence and decoherence by classical field noise. We perform measurements of decoherence times of bismuth donors in natural silicon using both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) transitions, and in both cases find excellent agreement with our theory across a wide parameter range. The universality of our expression is also tested by quantitative comparisons with previous measurements of decoherence around `optimal working points or `clock transitions where decoherence is strongly suppressed. We further validate our results by comparison to cluster expansion simulations.
Tunneling two level systems (TLS), present in dielectrics at low temperatures, have been recently studied for fundamental understanding and superconducting device development. According to a recent theory by Burin textit{et al.}, the TLS bath of any amorphous dielectric experiences a distribution of Landau-Zener transitions if exposed to simultaneous fields. In this experiment we measure amorphous insulating films at millikelvin temperatures with a microwave field and a swept electric field bias using a superconducting resonator. We find that the maximum dielectric loss per microwave photon with the simultaneous fields is approximately the same as that in the equilibrium state, in agreement with the generic material theory. In addition, we find that the loss depends on the fields in a way which allows for the separate extraction of the TLS bath dipole moment and density of states. This method allows for the study of the TLS dipole moment in a diverse set of disordered films, and provides a technique for continuously inverting their population.
We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, where a nonlinear component couples to light. We analyze the one-dimensional case using the Jordan-Wigner transformation, as well as the mean field limit where the system is described by a Lipkin-Meshkov-Glick Hamiltonian. These limits provide complementary insights into the behavior of many-body systems under ARP, suggesting our results are generally applicable. We demonstrate that ARP can be used for state preparation in the presence of interactions, and identify the dependence of the required pulse shapes on the interaction strength. In general interactions increase the pulse bandwidth required for successful state transfer, introducing new restrictions on the pulse forms required.
A superconducting qubit was driven in an ultrastrong fashion by an oscillatory microwave field, which was created by coupling via the nonlinear Josephson energy. The observed Stark shifts of the `atomic levels are so pronounced that corrections even beyond the lowest-order Bloch-Siegert shift are needed to properly explain the measurements. The quasienergies of the dressed two-level system were probed by resonant absorption via a cavity, and the results are in agreement with a calculation based on the Floquet approach.
Superposition states of circular currents of exciton-polaritons mimic the superconducting flux qubits. The phase of a polariton fluid must change by an integer number of $2pi$, when going around the ring. If one introduces a ${pi}$-phase delay line in the ring, the fluid is obliged to propagate a clockwise or anticlockwise circular current to reduce the total phase gained over one round-trip to zero or to build it up to $2pi$. We show that such a $pi$-delay line can be provided by a dark soliton pinned to a potential well created by a C-shape non-resonant pump-spot. The resulting split-ring polariton condensates exhibit pronounced coherent oscillations passing periodically through clockwise and anticlockwise current states. These oscillations may persist far beyond the coherence time of polariton condensates. The qubits based on split-ring polariton condensates are expected to possess very high figures of merit that makes them a valuable alternative to superconducting qubits. The use of the dipole-polarized polaritons allows to control coherently the state of the qubit with the external electric field. This is shown to be one of the tools for realization of single-qubit logic operations. We propose the design of an $i$SWAP gate based on a pair of coupled polariton qubits. To demonstrate the capacity of the polariton platform for quantum computations, we propose a protocol for the realization of the Deutschs algorithm with polariton qubit networks.