Do you want to publish a course? Click here

Adiabatic state preparation of interacting two-level systems

348   0   0.0 ( 0 )
 Added by Richard Brierley
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, where a nonlinear component couples to light. We analyze the one-dimensional case using the Jordan-Wigner transformation, as well as the mean field limit where the system is described by a Lipkin-Meshkov-Glick Hamiltonian. These limits provide complementary insights into the behavior of many-body systems under ARP, suggesting our results are generally applicable. We demonstrate that ARP can be used for state preparation in the presence of interactions, and identify the dependence of the required pulse shapes on the interaction strength. In general interactions increase the pulse bandwidth required for successful state transfer, introducing new restrictions on the pulse forms required.



rate research

Read More

335 - Yanwen Wu , I.M. Piper , M. Ediger 2010
Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We demonstrate that when the pulse power exceeds a threshold for inversion, the final state is independent of power. This provides a new tool for preparing quantum states in semiconductor dots and has a wide range of potential uses.
The energy states in semiconductor quantum dots are discrete as in atoms, and quantum states can be coherently controlled with resonant laser pulses. Long coherence times allow the observation of Rabi-flopping of a single dipole transition in a solid state device, for which occupancy of the upper state depends sensitively on the dipole moment and the excitation laser power. We report on the robust preparation of a quantum state using an optical technique that exploits rapid adiabatic passage from the ground to an excited state through excitation with laser pulses whose frequency is swept through the resonance. This observation in photoluminescence experiments is made possible by introducing a novel optical detection scheme for the resonant electron hole pair (exciton) generation.
We derive a master equation for a driven double-dot damped by an unstructured phonon bath, and calculate the spectral density. We find that bath mediated photon absorption is important at relatively strong driving, and may even dominate the dynamics, inducing population inversion of the double dot system. This phenomenon is consistent with recent experimental observations.
The coupling between single-photon emitters and phonons opens many possibilities to store and transmit quantum properties. In this paper we apply the independent boson model to describe the coupling between an optically driven two-level system and a discrete phonon mode. Tailored optical driving allows not only to generate coherent phonon states, but also to generate coherent superpositions in the form of Schrodinger cat states in the phonon system. We analyze the influence of decay and dephasing of the two-level system on these phonon preparation protocols. We find that the decay transforms the coherent phonon state into a circular distribution in phase space. Although the dephasing between two exciting laser pulses leads to a reduction of the interference ability in the phonon system, the decay conserves it during the transition into the ground state. This allows to store the phonon quantum state properties in the ground state of the single-photon emitter.
Superposition states of circular currents of exciton-polaritons mimic the superconducting flux qubits. The phase of a polariton fluid must change by an integer number of $2pi$, when going around the ring. If one introduces a ${pi}$-phase delay line in the ring, the fluid is obliged to propagate a clockwise or anticlockwise circular current to reduce the total phase gained over one round-trip to zero or to build it up to $2pi$. We show that such a $pi$-delay line can be provided by a dark soliton pinned to a potential well created by a C-shape non-resonant pump-spot. The resulting split-ring polariton condensates exhibit pronounced coherent oscillations passing periodically through clockwise and anticlockwise current states. These oscillations may persist far beyond the coherence time of polariton condensates. The qubits based on split-ring polariton condensates are expected to possess very high figures of merit that makes them a valuable alternative to superconducting qubits. The use of the dipole-polarized polaritons allows to control coherently the state of the qubit with the external electric field. This is shown to be one of the tools for realization of single-qubit logic operations. We propose the design of an $i$SWAP gate based on a pair of coupled polariton qubits. To demonstrate the capacity of the polariton platform for quantum computations, we propose a protocol for the realization of the Deutschs algorithm with polariton qubit networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا