Do you want to publish a course? Click here

Unusual Non-Fermi Liquid Behavior of Ce$_{1-x}$La$_{x}$Ni$_{9}$Ge$_4$ Analyzed in a Single Impurity Anderson Model with Crystal Field Effects

58   0   0.0 ( 0 )
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

CeNi$_{9}$Ge$_4$ exhibits unusual non-Fermi liquid behavior with the largest ever recorded value of the electronic specific heat $Delta C/T cong 5.5$ JK$^{-2}$mol$^{-1}$ without showing any evidence of magnetic order. Specific heat measurements show that the logarithmic increase of the Sommerfeld coefficient flattens off below 200 mK. In marked contrast, the local susceptibility $Deltachi$ levels off well above 200 mK and already becomes constant below 1 K. Furthermore, the entropy reaches 2$R$ln2 below 20 K corresponding to a four level system. An analysis of $C$ and $chi$ was performed in terms of an $SU(N=4)$ single impurity Anderson model with additional crystal electric field (CEF) splitting. Numerical renormalization group calculations point to a possible consistent description of the different low temperature scales in $Delta c$ and $Delta chi$ stemming from the interplay of Kondo effect and crystal field splitting.



rate research

Read More

111 - L Peyker , C Gold , E-W Scheidt 2009
Starting with the heavy fermion compound CeNi$_9$Ge$_4$, the substitution of nickel by copper leads to a dominance of the RKKY interaction in competition with the Kondo and crystal field interaction. Consequently, this results in an antiferromagnetic phase transition in CeNi$_{9-x}$Cu$_x$Ge$_4$ for $x>0.4$, which is, however, not fully completed up to a Cu-concentration of $x=1$. To study the influence of single-ion effects on the AFM ordering by shielding the $4f$-moments, we analyzed the spin diluted substitution series La$_{0.5}$Ce$_{0.5}$Ni$_{9-x}$Cu$_x$Ge$_4$ by magnetic susceptibility $chi$ and specific heat $C$ measurements. For small Cu-amounts $xleq 0.4$ the data reveal single-ion scaling with regard to the Ce-concentration, while for larger Cu-concentrations the AFM transition (encountered in the CeNi$_{9-x}$Cu$_x$Ge$_4$ series) is found to be completely depressed. Calculation of the entropy reveal that the Kondo-effect still shields the 4$f$-moments of the Ce$^{3+}$-ions in CeNi$_8$CuGe$_4$.
Non-Fermi-liquid (NFL) behavior in the f-sublattice-diluted alloy system U_{1-x}Th_xPd_2Al_3 has been studied using ^{27}Al nuclear magnetic resonance (NMR). Impurity satellites due to specific U near-neighbor configurations to ^{27}Al sites are clearly resolved in both random and field-aligned powder samples. The spatial mean Kbar and rms spread delta K of impurity satellite shifts, which are related to the mean chibar and rms spread delta chi of the inhomogeneous susceptibility, have been measured in field-aligned powders with the crystalline c axis both perpendicular and parallel to the external field. The relatively narrow lines observed at low temperatures suggest that disorder- induced inhomogeneity of the f-ion--conduction-electron hybridization is not the cause of NFL behavior in these alloys: at low temperatures the experimental values of delta chi(T)/chibar(T) are much smaller than required by disorder- driven models. This is in contrast to results in at least some alloys with disordered non-f-ion nearest neighbors to f ions (ligand disorder), where disorder-driven theories give good accounts of NFL behavior. Our results suggest that f-ion dilution does not produce as much inhomogeneity of the hybridization strength as substitution on ligand sites.
Electron-doped Sr(Co{1-x}Ni{x})2As2 single crystals with compositions x = 0 to 0.9 were grown out of self-flux and SrNi2As2 single crystals out of Bi flux. The crystals were characterized using single-crystal x-ray diffraction (XRD), magnetic susceptibility chi(H,T), isothermal magnetization M(H,T), heat capacity Cp(H,T), and electrical resistivity ho(H,T) measurements versus applied magnetic field H and temperature T. The chi(T) data show that the crystals exhibit an antiferromagnetic (AFM) ground state almost immediately upon Ni doping on the Co site. Ab-initio electronic-structure calculations for x = 0 and x = 0.15 indicate that a flat band with a peak in the density of states just above the Fermi energy is responsible for this initial magnetic-ordering behavior on Ni doping. The Curie-Weiss-like T dependence of chi in the paramagnetic (PM) state indicates dominant ferromagnetic (FM) interactions. The small ordered moments ~0.1 muB per transition metal atom and the values of the Rhodes-Wohlfarth ratio indicate that the magnetism is itinerant. The Cp(T) at low T exhibits Fermi-liquid behavior for 0 < x < 0.15 whereas an evolution to a logarithmic non-Fermi-liquid (NFL) behavior is found for x = 0.2 to 0.3. The logarithmic dependence is suppressed in an applied magnetic field. The low- T rho(H = 0,T) data show a T^2 dependence for 0 < x < 0.20 and a power-law dependence with n < 2 for x = 0.20 and 0.30. These low-T NFL behaviors observed in the Cp and rho measurements are most evident near the quantum-critical concentration x ~ 0.3 at which a T = 0 composition-induced transition from the AFM phase to the PM phase occurs.
Polycrystalline samples of Ce(Cu$_{1-x}$Co$_x$)$_2$Ge$_2$ were investigated by means of electrical resistivity $rho$($T$), magnetic susceptibility $chi$($T$), specific heat $C$$_p$($T$) and thermo electric power $S$($T$) measurements. The long-range antiferromagnetic (AFM) order, which set in at $T$$_N$ = 4.1 K in CeCu$_2$Ge$_2$, is suppressed by non-iso-electronic cobalt (Co) doping at a critical value of the concentration $x$$_c$ = 0.6, accompanied by non-Fermi liquid (NFL) behavior inferred from the power law dependence of heat capacity and susceptibility i.e. $C$($T$)/$T$ and $chi$($T$) $propto$ $T$$^{-1+lambda}$ down to 0.4 K, along with a clear deviation from $T$$^2$ behavior of the electrical resistivity. However, we have not seen any superconducting phase in the quantum critical regime down to 0.4 K.
143 - T. Hu , Y. P. Singh , L. Shu 2012
One of the greatest challenges to Landaus Fermi liquid theory - the standard theory of metals - is presented by complex materials with strong electronic correlations. In these materials, non-Fermi liquid transport and thermodynamic properties are often explained by the presence of a continuous quantum phase transition which happens at a quantum critical point (QCP). A QCP can be revealed by applying pressure, magnetic field, or changing the chemical composition. In the heavy-fermion compound CeCoIn$_5$, the QCP is assumed to play a decisive role in defining the microscopic structure of both normal and superconducting states. However, the question of whether QCP must be present in the materials phase diagram to induce non-Fermi liquid behavior and trigger superconductivity remains open. Here we show that the full suppression of the field-induced QCP in CeCoIn$_5$ by doping with Yb has surprisingly little impact on both unconventional superconductivity and non-Fermi liquid behavior. This implies that the non-Fermi liquid metallic behavior could be a new state of matter in its own right rather then a consequence of the underlying quantum phase transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا