CeNi$_{9}$Ge$_4$ exhibits unusual non-Fermi liquid behavior with the largest ever recorded value of the electronic specific heat $Delta C/T cong 5.5$ JK$^{-2}$mol$^{-1}$ without showing any evidence of magnetic order. Specific heat measurements show that the logarithmic increase of the Sommerfeld coefficient flattens off below 200 mK. In marked contrast, the local susceptibility $Deltachi$ levels off well above 200 mK and already becomes constant below 1 K. Furthermore, the entropy reaches 2$R$ln2 below 20 K corresponding to a four level system. An analysis of $C$ and $chi$ was performed in terms of an $SU(N=4)$ single impurity Anderson model with additional crystal electric field (CEF) splitting. Numerical renormalization group calculations point to a possible consistent description of the different low temperature scales in $Delta c$ and $Delta chi$ stemming from the interplay of Kondo effect and crystal field splitting.
Starting with the heavy fermion compound CeNi$_9$Ge$_4$, the substitution of nickel by copper leads to a dominance of the RKKY interaction in competition with the Kondo and crystal field interaction. Consequently, this results in an antiferromagnetic phase transition in CeNi$_{9-x}$Cu$_x$Ge$_4$ for $x>0.4$, which is, however, not fully completed up to a Cu-concentration of $x=1$. To study the influence of single-ion effects on the AFM ordering by shielding the $4f$-moments, we analyzed the spin diluted substitution series La$_{0.5}$Ce$_{0.5}$Ni$_{9-x}$Cu$_x$Ge$_4$ by magnetic susceptibility $chi$ and specific heat $C$ measurements. For small Cu-amounts $xleq 0.4$ the data reveal single-ion scaling with regard to the Ce-concentration, while for larger Cu-concentrations the AFM transition (encountered in the CeNi$_{9-x}$Cu$_x$Ge$_4$ series) is found to be completely depressed. Calculation of the entropy reveal that the Kondo-effect still shields the 4$f$-moments of the Ce$^{3+}$-ions in CeNi$_8$CuGe$_4$.
Non-Fermi-liquid (NFL) behavior in the f-sublattice-diluted alloy system U_{1-x}Th_xPd_2Al_3 has been studied using ^{27}Al nuclear magnetic resonance (NMR). Impurity satellites due to specific U near-neighbor configurations to ^{27}Al sites are clearly resolved in both random and field-aligned powder samples. The spatial mean Kbar and rms spread delta K of impurity satellite shifts, which are related to the mean chibar and rms spread delta chi of the inhomogeneous susceptibility, have been measured in field-aligned powders with the crystalline c axis both perpendicular and parallel to the external field. The relatively narrow lines observed at low temperatures suggest that disorder- induced inhomogeneity of the f-ion--conduction-electron hybridization is not the cause of NFL behavior in these alloys: at low temperatures the experimental values of delta chi(T)/chibar(T) are much smaller than required by disorder- driven models. This is in contrast to results in at least some alloys with disordered non-f-ion nearest neighbors to f ions (ligand disorder), where disorder-driven theories give good accounts of NFL behavior. Our results suggest that f-ion dilution does not produce as much inhomogeneity of the hybridization strength as substitution on ligand sites.
Electron-doped Sr(Co{1-x}Ni{x})2As2 single crystals with compositions x = 0 to 0.9 were grown out of self-flux and SrNi2As2 single crystals out of Bi flux. The crystals were characterized using single-crystal x-ray diffraction (XRD), magnetic susceptibility chi(H,T), isothermal magnetization M(H,T), heat capacity Cp(H,T), and electrical resistivity ho(H,T) measurements versus applied magnetic field H and temperature T. The chi(T) data show that the crystals exhibit an antiferromagnetic (AFM) ground state almost immediately upon Ni doping on the Co site. Ab-initio electronic-structure calculations for x = 0 and x = 0.15 indicate that a flat band with a peak in the density of states just above the Fermi energy is responsible for this initial magnetic-ordering behavior on Ni doping. The Curie-Weiss-like T dependence of chi in the paramagnetic (PM) state indicates dominant ferromagnetic (FM) interactions. The small ordered moments ~0.1 muB per transition metal atom and the values of the Rhodes-Wohlfarth ratio indicate that the magnetism is itinerant. The Cp(T) at low T exhibits Fermi-liquid behavior for 0 < x < 0.15 whereas an evolution to a logarithmic non-Fermi-liquid (NFL) behavior is found for x = 0.2 to 0.3. The logarithmic dependence is suppressed in an applied magnetic field. The low- T rho(H = 0,T) data show a T^2 dependence for 0 < x < 0.20 and a power-law dependence with n < 2 for x = 0.20 and 0.30. These low-T NFL behaviors observed in the Cp and rho measurements are most evident near the quantum-critical concentration x ~ 0.3 at which a T = 0 composition-induced transition from the AFM phase to the PM phase occurs.
Polycrystalline samples of Ce(Cu$_{1-x}$Co$_x$)$_2$Ge$_2$ were investigated by means of electrical resistivity $rho$($T$), magnetic susceptibility $chi$($T$), specific heat $C$$_p$($T$) and thermo electric power $S$($T$) measurements. The long-range antiferromagnetic (AFM) order, which set in at $T$$_N$ = 4.1 K in CeCu$_2$Ge$_2$, is suppressed by non-iso-electronic cobalt (Co) doping at a critical value of the concentration $x$$_c$ = 0.6, accompanied by non-Fermi liquid (NFL) behavior inferred from the power law dependence of heat capacity and susceptibility i.e. $C$($T$)/$T$ and $chi$($T$) $propto$ $T$$^{-1+lambda}$ down to 0.4 K, along with a clear deviation from $T$$^2$ behavior of the electrical resistivity. However, we have not seen any superconducting phase in the quantum critical regime down to 0.4 K.
One of the greatest challenges to Landaus Fermi liquid theory - the standard theory of metals - is presented by complex materials with strong electronic correlations. In these materials, non-Fermi liquid transport and thermodynamic properties are often explained by the presence of a continuous quantum phase transition which happens at a quantum critical point (QCP). A QCP can be revealed by applying pressure, magnetic field, or changing the chemical composition. In the heavy-fermion compound CeCoIn$_5$, the QCP is assumed to play a decisive role in defining the microscopic structure of both normal and superconducting states. However, the question of whether QCP must be present in the materials phase diagram to induce non-Fermi liquid behavior and trigger superconductivity remains open. Here we show that the full suppression of the field-induced QCP in CeCoIn$_5$ by doping with Yb has surprisingly little impact on both unconventional superconductivity and non-Fermi liquid behavior. This implies that the non-Fermi liquid metallic behavior could be a new state of matter in its own right rather then a consequence of the underlying quantum phase transition.
E.-W. Scheidt
,F. Mayr
,U. Killer
.
(2005)
.
"Unusual Non-Fermi Liquid Behavior of Ce$_{1-x}$La$_{x}$Ni$_{9}$Ge$_4$ Analyzed in a Single Impurity Anderson Model with Crystal Field Effects"
.
Ernst-Wilhelm Scheidt
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا