Do you want to publish a course? Click here

Entanglement between static and flying qubits in quantum wires

137   0   0.0 ( 0 )
 Added by Anton Ramsak
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

A weakly bound electron in a semiconductor quantum wire is shown to become entangled with an itinerant electron via the coulomb interaction. The degree of entanglement and its variation with energy of the injected electron, may be tuned by choice of spin and initial momentum. Full entanglement is achieved close to energies where there are spin-dependent resonances. Possible realisations of related device structures are discussed.



rate research

Read More

We consider a model of a detector of ballistic electrons at the edge of a two-dimensional electron gas in the integer quantum Hall regime. The electron is detected by capacitive coupling to a gate which is also coupled to a passive RC circuit. Using a quantum description of this circuit, we determine the signal over noise ratio of the detector in term of the detector characteristics. The back-action of the detector on the incident wavepacket is then computed using a Feynman-Vernon influence functional approach. Using information theory, we define the appropriate notion of quantum limit for such an on the fly detector. We show that our particular detector can approach the quantum limit up to logarithms in the ratio of the measurement time over the RC relaxation time. We argue that such a weak logarithmic effect is of no practical significance. Finally we show that a two-electron interference experiment can be used to probe the detector induced decoherence.
Superconducting circuits are currently developed as a versatile platform for the exploration of many-body physics, both at the analog and digital levels. Their building blocks are often idealized as two-level qubits, drawing powerful analogies to quantum spin models. For a charge qubit that is capacitively coupled to a transmission line, this analogy leads to the celebrated spin-boson description of quantum dissipation. We put here into evidence a failure of the two-level paradigm for realistic superconducting devices, due to electrostatic constraints which limit the maximum strength of dissipation. These prevent the occurence of the spin-boson quantum phase transition for transmons, even up to relatively large non-linearities. A different picture for the many-body ground state describing strongly dissipative transmons is proposed, showing unusual zero point fluctuations.
506 - Haidong Li , Yisong Zheng 2008
The contact conductance between graphene and two quantum wires which serve as the leads to connect graphene and electron reservoirs is theoretically studied. Our investigation indicates that the contact conductance depends sensitively on the graphene-lead coupling configuration. When each quantum wire couples solely to one carbon atom, the contact conductance vanishes at the Dirac point if the two carbon atoms coupling to the two leads belong to the same sublattice of graphene. We find that such a feature arises from the chirality of the Dirac electron in graphene. Such a chirality associated with conductance zero disappears when a quantum wire couples to multiple carbon atoms. The general result irrelevant to the coupling configuration is that the contact conductance decays rapidly with the increase of the distance between the two leads. In addition, in the weak graphene-lead coupling limit, when the distance between the two leads is much larger than the size of the graphene-lead contact areas and the incident electron energy is close to the Dirac point, the contact conductance is proportional to the square of the product of the two graphene-lead contact areas, and inversely proportional to the square of the distance between the two leads.
We investigate the entanglement spectra arising from sharp real-space partitions of the system for quantum Hall states. These partitions differ from the previously utilized orbital and particle partitions and reveal complementary aspects of the physics of these topologically ordered systems. We show, by constructing one to one maps to the particle partition entanglement spectra, that the counting of the real-space entanglement spectra levels for different particle number sectors versus their angular momentum along the spatial partition boundary is equal to the counting of states for the system with a number of (unpinned) bulk quasiholes excitations corresponding to the same particle and flux numbers. This proves that, for an ideal model state described by a conformal field theory, the real-space entanglement spectra level counting is bounded by the counting of the conformal field theory edge modes. This bound is known to be saturated in the thermodynamic limit (and at finite sizes for certain states). Numerically analyzing several ideal model states, we find that the real-space entanglement spectra indeed display the edge modes dispersion relations expected from their corresponding conformal field theories. We also numerically find that the real-space entanglement spectra of Coulomb interaction ground states exhibit a series of branches, which we relate to the model state and (above an entanglement gap) to its quasiparticle-quasihole excitations. We also numerically compute the entanglement entropy for the nu=1 integer quantum Hall state with real-space partitions and compare against the analytic prediction. We find that the entanglement entropy indeed scales linearly with the boundary length for large enough systems, but that the attainable system sizes are still too small to provide a reliable extraction of the sub-leading topological entanglement entropy term.
In this paper we derive an effective master equation and quantum trajectory equation for multiple qubits in a single resonator and in the large resonator decay limit. We show that homodyne measurement of the resonator transmission is a weak measurement of the collective qubit inversion. As an example of this result, we focus on the case of two qubits and show how this measurement can be used to generate an entangled state from an initially separable state. This is realized without relying on an entangling Hamiltonian. We show that, for {em current} experimental values of both the decoherence and measurement rates, this approach can be used to generate highly entangled states. This scheme takes advantage of the fact that one of the Bell states is decoherence-free under Purcell decay.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا