No Arabic abstract
We report on Raman scattering measurements of single crystalline La$_{1-x}$Sr$_x$MnO$_3$ ($x$=0, 0.06, 0.09 and 0.125), focusing on the high frequency regime. We observe multi-phonon scattering processes up to fourth-order which show distinct features: (i) anomalies in peak energy and its relative intensity and (ii) a pronounced temperature-, polarization-, and doping-dependence. These features suggest a mixed orbiton-phonon nature of the observed multi-phonon Raman spectra.
We describe a strategy for using resonant soft x-ray scattering (RSXS) to study the electronic structure of transition metal oxide quantum wires. Using electron beam lithography and ion milling, we have produced periodic, patterned arrays of colossal magnetoresistance (CMR) phase La(1-x)Sr(x)MnO(3) consisting of ~ 5000 wires, each of which is 80 nm in width. The scattered intensity exhibits a series of peaks that can be interpreted as Bragg reflections from the periodic structure or, equivalently, diffraction orders from the grating-like structure. RSXS measurements at the Mn L(2,3) edge, which has a large magnetic cross section, show clear evidence for a magnetic superstructure with a commensurate period of five wires, which we interpret as commensurately modulated antiferromagnetism. This superstructure, which is accompanied by non-trivial reorganization of the magnetization within each wire, likely results from classical dipole interactions among the wires. We introduce a simple, exactly soluble, analytic model of the scattering that captures, semi-quantitatively, the primary features in the RSXS data; this model will act as a foundation for forthcoming, detailed studies of the magnetic structure in these systems.
We report low temperature specific heat measurements of Pr$_{1-x}$Ca$_{x}$MnO$_{3}$ ($0.3leq x leq 0.5$) and La$_{0.5}$Ca$_{0.5}$MnO$_{3}$ with and without applied magnetic field. An excess specific heat, $C^{prime}(T)$, of non-magnetic origin associated with charge ordering is found for all the samples. A magnetic field sufficient to induce the transition from the charge-ordered state to the ferromagnetic metallic state does not completely remove the $C^{prime}$ contribution. This suggests that the charge ordering is not completely destroyed by a melting magnetic field. In addition, the specific heat of the Pr$_{1-x}$Ca$_{x}$MnO$_{3}$ compounds exhibit a large contribution linear in temperature ($gamma T$) originating from magnetic and charge disorder.
We report on an a $mu$SR and $^{55}$Mn NMR investigation of the magnetic order parameter as a function of temperature in the optimally doped La$_{5/8}$(Ca$_y$Sr$_{1-y}$)$_{3/8}$MnO$_3$ and in the underdoped La$_{1-x}$Sr$_{x}$MnO$_3$ and La$_{1-x}$Ca$_{x}$MnO$_3$ metallic manganite families. The study is aimed at unraveling the effect of lattice distortions, implicitly controlled by the Ca-Sr isoelectronic substitution, from that of hole doping $x$ on the Curie temperature $T_c$ and the order of the magnetic transition. At optimal doping, the transitions are second order at all $y$ values, including the $y=1$ (La$_{5/8}$Ca$_{3/8}$MnO$_3$) end member. In contrast, they are first order in the underdoped samples, which show a finite (truncated) order parameter at the Curie point, including La$_{0.75}$Sr$_{0.25}$MnO$_3$ whose $T_c$ is much higher than that of La$_{5/8}$Ca$_{3/8}$MnO$_3$. The order parameter curves, on the other hand, exhibit a very minor dependence on $x$, if truncation is excepted. This suggests that the effective exchange interaction between Mn ions is essentially governed by local distortions, in agreement with the original double-exchange model, while truncation is primarily, if not entirely, an effect of under- or overdoping. A phase diagram, separating in the $x-y$ plane polaron-driven first order transitions from regular second order transitions governed by critical fluctuations, is proposed for the La$_{1-x}($Ca$_y$Sr$_{1-y}$)$_{x}$MnO$_3$ system.
We have investigated change in the electronic structures of atomically-controlled La$_{1-x}$Sr$_x$MnO$_3$ (LSMO) thin films as a function of hole-doping level ($x$) in terms of {it in situ} photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS) measurements. The {it in situ} PES measurements on a well-ordered surface of high-quality epitaxial LSMO thin films enable us to reveal their intrinsic electronic structures, especially the structure near the Fermi level ($E_F$). We have found that overall features of valence band as well as the core levels monotonically shifted toward lower binding energy as $x$ was increased, indicating the rigid-band like behavior of underlying electronic structure of LSMO thin films. The peak nearest to $E_F$ due to the $e_g$ orbital is also found to move toward $E_F$ in a rigid-band manner, while the peak intensity decreases with increasing $x$. The loss of spectral weight with $x$ in the occupied density of states was compensated by simultaneous increment of the shoulder structure in O 1$s$ XAS spectra, suggesting the existence of a pseudogap, that is depression in spectral weight at $E_F$, for all metallic compositions. These results indicate that the simple rigid-band model does not describe the electronic structure near $E_F$ of LSMO and that the spectral weight transfer from below to above $E_F$ across the gap dominates the spectral changes with $x$ in LSMO thin films.
With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (LSCO/LCMO) multilayers. We demonstrate that these electronic and magnetic proximity effects are coupled and are common to these cuprate/manganite multilayers. Moreover, we show that they are closely linked to a specific interface termination with a direct Cu-O-Mn bond. We furthermore show that the intrinsic hole doping of the cuprate layers and the local strain due to the lattice mismatch between the cuprate and manganite layers are not of primary importance. These findings underline the central role of the covalent bonding at the cuprate/manganite interface in defining the spin-electronic properties.