No Arabic abstract
We describe a strategy for using resonant soft x-ray scattering (RSXS) to study the electronic structure of transition metal oxide quantum wires. Using electron beam lithography and ion milling, we have produced periodic, patterned arrays of colossal magnetoresistance (CMR) phase La(1-x)Sr(x)MnO(3) consisting of ~ 5000 wires, each of which is 80 nm in width. The scattered intensity exhibits a series of peaks that can be interpreted as Bragg reflections from the periodic structure or, equivalently, diffraction orders from the grating-like structure. RSXS measurements at the Mn L(2,3) edge, which has a large magnetic cross section, show clear evidence for a magnetic superstructure with a commensurate period of five wires, which we interpret as commensurately modulated antiferromagnetism. This superstructure, which is accompanied by non-trivial reorganization of the magnetization within each wire, likely results from classical dipole interactions among the wires. We introduce a simple, exactly soluble, analytic model of the scattering that captures, semi-quantitatively, the primary features in the RSXS data; this model will act as a foundation for forthcoming, detailed studies of the magnetic structure in these systems.
A laboratory hard X-ray photoelectron spectroscopy (HXPS) system equipped with a monochromatic Cr K$alpha$ ($h u = 5414.7$ eV) X-ray source was applied to an investigation of the core-level electronic structure of La$_{1-x}$Sr$_x$MnO$_3$. No appreciable high binding-energy shoulder in the O $1s$ HXPS spectra were observed while an enhanced low binding-energy shoulder structure in the Mn $2p_{3/2}$ HXPS spectra were observed, both of which are manifestation of high bulk sensitivity. Such high bulk sensitivity enabled us to track the Mn $2p_{3/2}$ shoulder structure in the full range of $x$, giving us a new insight into the binding-energy shift of the Mn $2p_{3/2}$ core level. Comparisons with the results using the conventional laboratory XPS ($h u = 1486.6$ eV) as well as those using a synchrotron radiation source ($h u = 7939.9$ eV) demonstrate that HXPS is a powerful and convenient tool to analyze the bulk electronic structure of a host of different compounds.
The transport and magnetic properties of correlated La{0.53}Sr{0.47}MnO{3} ultrathin films, grown epitaxially on SrTiO{3}, show a sharp cusp at the structural transition temperature of the substrate. Using a combination of experiment and theory we show that the cusp is a result of resonant coupling between the charge carriers in the film and a soft phonon mode in the SrTiO{3}, mediated through oxygen octahedra in the film. The amplitude of the mode diverges towards the transition temperature, and phonons are launched into the first few atomic layers of the film affecting its electronic state.
We report on Raman scattering measurements of single crystalline La$_{1-x}$Sr$_x$MnO$_3$ ($x$=0, 0.06, 0.09 and 0.125), focusing on the high frequency regime. We observe multi-phonon scattering processes up to fourth-order which show distinct features: (i) anomalies in peak energy and its relative intensity and (ii) a pronounced temperature-, polarization-, and doping-dependence. These features suggest a mixed orbiton-phonon nature of the observed multi-phonon Raman spectra.
Perpendicular magnetic anisotropy (PMA) plays a critical role in the development of spintronics, thereby demanding new strategies to control PMA. Here we demonstrate a conceptually new type of interface induced PMA that is controlled by oxygen octahedral rotation. In superlattices comprised of La$_{1-x}$Sr$_{x}$MnO$_{3}$ and SrIrO$_{3}$, we find that all superlattices (0$leq$x$leq$1) exhibit ferromagnetism despite the fact that La$_{1-x}$Sr$_{x}$MnO$_{3}$ is antiferromagnetic for x$>$0.5. PMA as high as 4$times$10$^6$ erg/cm$^3$ is observed by increasing x and attributed to a decrease of oxygen octahedral rotation at interfaces. We also demonstrate that oxygen octahedral deformation cannot explain the trend in PMA. These results reveal a new degree of freedom to control PMA, enabling discovery of emergent magnetic textures and topological phenomena.
Among colossal magnetoresistive manganites the prototypical ferromagnetic manganite La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ has a relatively small magnetoresistance, and has been long assumed to have only weak electron-lattice coupling. Here we report that La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ has strong electron-phonon coupling: Our neutron and x-ray scattering experiments show strong softening and broadening of transverse acoustic phonons on heating through the Curie temperature T$_C$ = 350 K. Simultaneously, we observe two phases where metallic resistivity and polarons coexist. The ferromagnetic polaronic metal phase between 200 K and T$_C$ is characterized by quasielastic scattering from dynamic CE-type polarons with the relatively short lifetime of $mathbf{tau}approx 1,rm{ps}$. This scattering is greatly enhanced above T$_C$ in the paramagnetic polaronic metal phase. Our results suggest that the strength of magnetoresistance in manganites scales with the inverse of polaron lifetime, not the strength of electron-phonon coupling.