We study the rank distribution, the cumulative probability, and the probability density of returns of stock prices of listed firms traded in four stock markets. We find that the rank distribution and the cumulative probability of stock prices traded in are consistent approximately with the Zipfs law or a power law. It is also obtained that the probability density of normalized returns for listed stocks almost has the form of the exponential function. Our results are compared with those of other numerical calculations.
This paper investigates the rank distribution, cumulative probability, and probability density of price returns for the stocks traded in the KSE and the KOSDAQ market. This research demonstrates that the rank distribution is consistent approximately with the Zipfs law with exponent $alpha = -1.00$ (KSE) and -1.31 (KOSDAQ), similar that of stock prices traded on the TSE. In addition, the cumulative probability distribution follows a power law with scaling exponent $beta = -1.23$ (KSE) and -1.45 (KOSDAQ). In particular, the evidence displays that the probability density of normalized price returns for two kinds of assets almost has the form of an exponential function, similar to the result in the TSE and the NYSE.
We investigate the general problem of how to model the kinematics of stock prices without considering the dynamical causes of motion. We propose a stochastic process with long-range correlated absolute returns. We find that the model is able to reproduce the experimentally observed clustering, power law memory, fat tails and multifractality of real financial time series. We find that the distribution of stock returns is approximated by a Gaussian with log-normally distributed local variance and shows excellent agreement with the behavior of the NYSE index for a range of time scales.
We investigate the herd behavior of returns for the yen-dollar exchange rate in the Japanese financial market. It is obtained that the probability distribution $P(R)$ of returns $R$ satisfies the power-law behavior $P(R) simeq R^{-beta}$ with the exponents $ beta=3.11$(the time interval $tau=$ one minute) and 3.36($tau=$ one day). The informational cascade regime appears in the herding parameter $Hge 2.33$ at $tau=$ one minute, while it occurs no herding at $tau=$ one day. Especially, we find that the distribution of normalized returns shows a crossover to a Gaussian distribution at one time step $Delta t=1$ day.
In recent years there has been a closer interrelationship between several scientific areas trying to obtain a more realistic and rich explanation of the natural and social phenomena. Among these it should be emphasized the increasing interrelationship between physics and financial theory. In this field the analysis of uncertainty, which is crucial in financial analysis, can be made using measures of physics statistics and information theory, namely the Shannon entropy. One advantage of this approach is that the entropy is a more general measure than the variance, since it accounts for higher order moments of a probability distribution function. An empirical application was made using data collected from the Portuguese Stock Market.
Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the S&P 500, FTSE100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.