Do you want to publish a course? Click here

Sympathetic cooling and collisional properties of a Rb-Cs mixture

56   0   0.0 ( 0 )
 Added by Oliver Morsch
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on measurements of the collisional properties of a mixture of $^{133}$Cs and $^{87}$Rb atoms in a magnetic trap at $mumathrm{K}$ temperatures. By selectively evaporating the Rb atoms using a radio-frequency field, we achieved sympathetic cooling of Cs down to a few $mumathrm{K}$. The inter-species collisional cross-section was determined through rethermalization measurements, leading to an estimate of $a_s=595 a_0$ for the s-wave scattering length for Rb in the $|F=2, m_F=2>$ and Cs in the $|F=4, m_F=4>$ magnetic states. We briefly speculate on the prospects for reaching Bose-Einstein condensation of Cs inside a magnetic trap through sympathetic cooling.



rate research

Read More

We determine the inter-species s-wave triplet scattering length a3 for all K-Rb isotopic mixtures by measuring the cross-section for collisions between 41K and 87Rb in different temperature regimes. The positive value a3=+163(+57,-12)a0 ensures the stability of binary 41K-87Rb Bose-Einstein condensates. For the fermion-boson mixture 40K-87Rb we obtain a large and negative scattering length which implies an efficient sympathetic cooling of the fermionic species down to the degenerate regime.
We report on the observation of interspecies Feshbach resonances in an ultracold, optically trapped mixture of Rb and Cs atoms. In a magnetic field range up to 300 G we find 23 interspecies Feshbach resonances in the lowest spin channel and 2 resonances in a higher channel of the mixture. The extraordinarily rich Feshbach spectrum suggests the importance of different partial waves in both the open and closed channels of the scattering problem along with higher-order coupling mechanisms. Our results provide, on one hand, fundamental experimental input to characterize the Rb-Cs scattering properties and, on the other hand, identify possible starting points for the association of ultracold heteronuclear RbCs molecules.
We report the observation of interspecies Feshbach resonances in an optically trapped mixture of $^{85}$Rb and $^{133}$Cs. We measure 14 interspecies features in the lowest spin channels for a magnetic field range from 0 to 700 G and show that they are in good agreement with coupled-channel calculations. The interspecies background scattering length is close to zero over a large range of magnetic fields, permitting the sensitive detection of Feshbach resonances through interspecies thermalisation. Our results confirm the quality of the Rb-Cs potential curves and offer promising starting points for the production of ultracold polar molecules.
We report the production of a high phase-space density mixture of $^{87}$Rb and $^{133}$Cs atoms in a levitated crossed optical dipole trap as the first step towards the creation of ultracold RbCs molecules via magneto-association. We present a simple and robust experimental setup designed for the sympathetic cooling of $^{133}$Cs via interspecies elastic collisions with $^{87}$Rb. Working with the $|F=1, m_F=+1 >$ and the $|3, +3 >$ states of $^{87}$Rb and $^{133}$Cs respectively, we measure a high interspecies three-body inelastic collision rate $sim 10^{-25}-10^{-26} rm{cm}^{6}rm{s}^{-1}$ which hinders the sympathetic cooling. Nevertheless by careful tailoring of the evaporation we can produce phase-space densities near quantum degeneracy for both species simultaneously. In addition we report the observation of an interspecies Feshbach resonance at 181.7(5) G and demonstrate the creation of Cs$_{2}$ molecules via magneto-association on the 4g(4) resonance at 19.8 G. These results represent important steps towards the creation of ultracold RbCs molecules in our apparatus.
139 - R K Singh , Y Shen , R Gandikota 2007
Our Rutherford backscattering spectrometry (RBS) study has found that concentrations up to 7 atomic percent of Rb and Cs can be introduced to a depth of ~700 A in MgB2 thin films by annealing in quartz ampoules containing elemental alkali metals at <350 degree centigrade. No significant change in transition temperature (Tc) was observed, in contrast to an earlier report of very high Tc (>50 K) for similar experiments on MgB2 powders. The lack of a significant change in Tc and intra-granular carrier scattering suggests that Rb and Cs diffuse into the film, but do not enter the grains. Instead, the observed changes in the electrical properties, including a significant drop in Jc and an increase in delta rho (rho300-rho40), arise from a decrease in inter-granular connectivity due to segregation of the heavy alkaline metals and other impurities (i.e. C and O) introduced into the grain boundary regions during the anneals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا