Do you want to publish a course? Click here

High quality superconducting niobium films produced by Ultra High Vacuum Cathodic Arc

259   0   0.0 ( 0 )
 Added by Roberto Russo
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The vacuum arc is a well-known technique to produce coating with enhanced adhesion and film density. Many cathodic arc deposition systems are actually in use in industry and research. They all work under (high) vacuum conditions in which water vapor pressure is an important source of film contamination, especially in the pulsed arc mode of operation. Here we present a Cathodic Arc system working under Ultra High Vacuum conditions (UHVCA). UHVCA has been used to produce ultra-pure niobium films with excellent structural and electrical properties at a deposition temperature lower than 100oC. The UHVCA technique therefore opens new perspectives for all applications requiring ultra-pure films or, as in the case of Plasma Immersion Ion Implantation, ultra-pure plasmas.



rate research

Read More

Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made of medium purity Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800 - 1400 C was done in a newly designed vacuum induction furnace. Q0 values of the order of 2x1010 at 2.0 K and peak surface magnetic field (Bp) of 90 mT were achieved reproducibly. A Q0-value of (5+-1)1010 at 2.0 K and Bp = 90 mT was obtained after heat treatment at 1400 C. This is the highest value ever reported at this temperature, frequency and field. Samples heat treated with the cavity at 1400 C were analyzed by secondary ion mass spectrometry, secondary electron microscopy, energy dispersive X-ray, point contact tunneling and X-ray diffraction and revealed a complex surface composition which includes titanium oxide, increased carbon and nitrogen content but reduced hydrogen concentration compared to a non heat-treated sample.
We use room temperature ion beam assisted sputtering (IBAS) to deposit niobium nitride thin films. Electrical and structural characterizations were performed by electric transport and magnetization measurements at variable temperatures, X-ray diffraction and atomic force microscopy. Compared to reactive sputtering of NbN, films sputtered in presence of an ion beam show remarkable increase in the superconducting critical temperature T$_{rm{c}}$, while exhibiting lower sensitivity to nitrogen concentration during deposition. Thickness dependence of the superconducting critical temperature is comparable to films prepared by conventional methods at high substrate temperatures and is consistent with behavior driven by quantum size effects or weak localization.
The superconducting film of (Li1-xFex)OHFeSe is reported for the first time. The thin film exhibits a small in-plane crystal mosaic of 0.22 deg, in terms of the FWHM (full-width-at-half-maximum) of x-ray rocking curve, and an excellent out-of-plane orientation by x-ray phi-scan. Its bulk superconducting transition temperature (Tc) of 42.4 K is characterized by both zero electrical resistance and diamagnetization measurements. The upper critical field (Hc2) is estimated to be 79.5 T and 443 T, respectively, for the magnetic field perpendicular and parallel to the ab plane. Moreover, a large critical current density (Jc) of a value over 0.5 MA/cm2 is achieved at ~20 K. Such a (Li1-xFex)OHFeSe film is therefore not only important to the fundamental research for understanding the high-Tc mechanism, but also promising in the field of high-Tc superconductivity application, especially in high-performance electronic devices and large scientific facilities such as superconducting accelerator.
Ambient magnetic field, if trapped in the penetration depth, leads to the residual resistance and therefore sets the limit for the achievable quality factors in superconducting niobium resonators for particle accelerators. Here we show that a complete expulsion of the magnetic flux can be performed and leads to: 1) record quality factors $Q > 2times10^{11}$ up to accelerating gradient of 22 MV/m; 2) $Qsim3times10^{10}$ at 2 K and 16 MV/m in up to 190 mG magnetic fields. This is achieved by large thermal gradients at the normal/superconducting phase front during the cooldown. Our findings open up a way to ultra-high quality factors at low temperatures and show an alternative to the sophisticated magnetic shielding implemented in modern superconducting accelerators.
175 - E.Bellingeri , R.Buzio , A.Gerbi 2009
Superconducting epitaxial FeSe0.5Te0.5 thin films were prepared on SrTiO3 (001) substrates by pulsed laser deposition. The high purity of the phase, the quality of the growth and the epitaxy were studied with different experimental techniques: X-rays diffraction, reflection high energy electron diffraction, scanning tunnelling microscopy and atomic force microscopy. The substrate temperature during the deposition was found to be the main parameter governing sample morphology and superconducting critical temperature. Films obtained in the optimal conditions show an epitaxial growth with c axis perpendicular to the film surface and the a and b axis parallel to the substrates one, without the evidence of any other orientation. Moreover, such films show a metallic behavior over the whole measured temperature range and critical temperature above 17K, which is higher than the target one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا