Do you want to publish a course? Click here

Vortices in superconductors with a columnar defect: finite size effects

55   0   0.0 ( 0 )
 Added by Edson Sardella
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present work we investigate the behavior of a vortex in a long superconducting cylinder near to a columnar defect at the center. The derivations of the local magnetic field distribution and the Gibbs free energy will be carried out for a cylinder and a cavity of arbitrary sizes. From the general expressions, it considered two particular limits: one in which the radius of the cavity is very small but the radius of the superconducting cylinder is kept finite; and one in which the radius of the superconducting cylinder is taken very large (infinite) but the radius of the cavity is kept finite. In both cases the maximum number of vortices which are allowed in the cavity is determined. In addition, the surface barrier field for flux entrance into the cavity is calculated.



rate research

Read More

342 - K. M. Suzuki , M. Ichioka , 2010
A novel spin density wave (SDW) instability mechanism enhanced by vortices under fields is proposed to explain the high field and low temperature (HL) phase in CeCoIn$_5$. In the vortex state the strong Pauli effect and the nodal gap conspire to enhance the momentum resolved spectral weight exclusively along the nodal direction over the normal value, providing a favorable nesting condition for SDW with ${bf Q}=(2k_F, 2k_F, 0.5)$ only under high field ($H$). Observed mysteries of the field-induced SDW confined within $H_{c2}$ are understood consistently, such facts that ${bf Q}$ is directed to the nodal direction independent of $H$, SDW diminishes under tilting field from the $ab$ plane, and the SDW transition line in $(H,T)$ has a positive slope.
A quantum pseudo-spin model with random spin sizes is introduced to study the effects of charging-energy disorder on the superconducting transition in granular superconducting materials. Charging-energy effects result from the small electrical capacitance of the grains when the Coulomb charging energy is comparable to the Josephson coupling energy. In the pseudo-spin model, randomness in the spin size is argued to arise from the inhomogeneous grain-size distribution. For a particular bimodal spin-size distribution, the model describes percolating granular superconductors. A mean-field theory is developed to obtain the phase diagram as a function of temperature, average charging energy and disorder.
Micro-channels of nanosized columnar tracks were planted by heavy-ion irradiation into superconducting microwave microstrip resonators that were patterned from YBa2Cu3O7-x thin films on LaAlO3 substrates. Three different ion fluences were used, producing different column densities, with each fluence having a successively greater impact on the nonlinearity of the device, as compared to a control sample. Photoresponse images made with a 638 nm rastered laser beam revealed that the channel is a location of enhanced photoresponse and a hot spot for the generation of intermodulation distortion. The microwave photoresponse technique was also advanced in this work by investigating the role of coupling strength on the distribution of photoresponse between inductive and resistive components.
We study the elasticity, fluctuations and pinning of a putative spontaneous vortex solid in ferromagnetic superconductors. Using a rigorous thermodynamic argument, we show that in the idealized case of vanishing crystalline pinning anisotropy the long-wavelength tilt modulus of such a vortex solid vanishes identically, as guaranteed by the underlying rotational invariance. The vanishing of the tilt modulus means that, to lowest order, the associated tension elasticity is replaced by the softer, curvature elasticity. The effect of this is to make the spontaneous vortex solid qualitatively more susceptible to the disordering effects of thermal fluctuations and random pinning. We study these effects, taking into account the nonlinear elasticity, that, in three dimensions, is important at sufficiently long length scales, and showing that a ``columnar elastic glass phase of vortices results. This phase is controlled by a previously unstudied zero-temperature fixed point and it is characterized by elastic moduli that have universal strong wave-vector dependence out to arbitrarily long length scales, leading to non-Hookean elasticity. We argue that, although translationally disordered for weak disorder, the columnar elastic glass is stable against the proliferation of dislocations and is therefore a topologically ordered {em elastic} glass. As a result, the phenomenology of the spontaneous vortex state of isotropic magnetic superconductors differs qualitatively from a conventional, external-field-induced mixed state. For example, for weak external fields $H$, the magnetic induction scales {em universally} like $B(H)sim B(0)+ c H^{alpha}$, with $alphaapprox 0.72$.
We analyze the structure of an $s-$wave superconducting gap in systems with electron-phonon attraction and electron-electron repulsion. Earlier works have found that superconductivity develops despite strong repulsion, but the gap, $Delta (omega_m)$, necessarily changes sign along the Matsubara axis. We analyze the sign-changing gap function from a topological perspective using the knowledge that a nodal point of $Delta (omega_m)$ is the center of dynamical vortex. We consider two models with different cutoffs for the repulsive interaction and trace the vortex positions along the Matsubara axis and in the upper frequency half plane upon changing the relative strength of the attractive and repulsive parts of the interaction. We discuss how the presence of dynamical vortices affects the gap structure along the real axis, detectable in ARPES experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا