Do you want to publish a course? Click here

Spin-size disorder model for granular superconductors with charging effects

299   0   0.0 ( 0 )
 Added by Enzo Granato
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

A quantum pseudo-spin model with random spin sizes is introduced to study the effects of charging-energy disorder on the superconducting transition in granular superconducting materials. Charging-energy effects result from the small electrical capacitance of the grains when the Coulomb charging energy is comparable to the Josephson coupling energy. In the pseudo-spin model, randomness in the spin size is argued to arise from the inhomogeneous grain-size distribution. For a particular bimodal spin-size distribution, the model describes percolating granular superconductors. A mean-field theory is developed to obtain the phase diagram as a function of temperature, average charging energy and disorder.



rate research

Read More

We investigate the effect of strong disorder on a system with strong electronic repulsion. In absence of disorder, the system has a d-wave superconducting ground-state with strong non-BCS features due to its proximity to a Mott insulator. We find that, while strong correlations make superconductivity in this system immune to weak disorder, superconductivity is destroyed efficiently when disorder strength is comparable to the effective bandwidth. The suppression of charge motion in regions of strong potential fluctuation leads to formation of Mott insulating patches, which anchor a larger non-superconducting region around them. The system thus breaks into islands of Mott insulating and superconducting regions, with Anderson insulating regions occurring along the boundary of these regions. Thus, electronic correlation and disorder, when both are strong, aid each other in destroying superconductivity, in contrast to their competition at weak disorder. Our results shed light on why Zinc impurities are efficient in destroying superconductivity in cuprates, even though it is robust to weaker impurities.
A two-fluid model is proposed to describe the transport properties of granular superconductors. Using the resistively shunted junction model and some aspects of the two-level system theory, a statistical model is developed which takes into account the ratio between the number of normal and superconducting electrons carrying the applied current. The theoretical model reveals excellent agreement when compared to transport properties of four high-Tc superconductors. The results suggest that the two-fluid model is independent of the sample composition, critical temperature and whether the superconducting compound is electron or hole-doped.
We report B_c2 data for LaO_{0.9}F_{0.1}FeAs_{1-delta} in a wide T and field range up to 60 Tesla. The large slope of B_c2 approx ~ -6 Tesla/K near an improved T_c = 28.5 K of the in-plane B_c2(T) contrasts with a flattening starting at 23 K above 30 Tesla we regard as the onset of Pauli-limited behavior (PLB) with B_c2(0) about 65 Tesla. We interpret a similar hitherto unexplained flattening of the B_c2(T) curves reported for at least three other disordered closely related systems as also as a manifestation of PLB. Their Maki parameters have been estimated analyzing their B_c2(T) data within the WHH approach. The pronounced PLB of (Ba,K)Fe_2As_2 single crystals from a tin-flux is attributed also to a significant As deficiency. Consequences of our results are discussed in terms of disorder effects within conventional (CSC) and unconventional superconductivity (USC). USC scenarios with nodes on individual Fermi surface sheets (FSS), can be discarded for our samples. The increase of dB_c2/dT|_{T_c} by sizeable disorder provides evidence for an important intraband (intra-FSS) contribution to the orbital upper critical field. We suggest that it can be ascribed either to an impurity driven transition from s_{+-} USC to CSC of an extended s_{++}-wave state or to a stabilized s_{+-}-state provided As-vacancies cause predominantly strong intraband scattering in the unitary limit. We compare our results with B_c2 data from the literature with no PLB for fields below 60 to 70 Tesla probed so far. A novel disorder related scenario of a complex interplay of SC with two different competing magnetic instabilities is suggested.
372 - L. Ponta , A. Carbone , M. Gilli 2009
The resistive transition of granular high-T$_c$ superconductors, characterized by either weak (YBCO-like) or strong (MgB$_2$-like) links, occurs through a series of avalanche-type current density rearrangements. These rearrangements correspond to the creation of resistive layers, crossing the whole specimen approximately orthogonal to the current density direction, due to the simultaneous transition of a large number of weak-links or grains. The present work shows that exact solution of the Kirchhoff equations for strongly and weakly linked networks of nonlinear resistors, with Josephson junction characteristics, yield the subsequent formation of resistive layers within the superconductive matrix as temperature increases. Furthermore, the voltage noise observed at the transition is related to the resistive layer formation process. The noise intensity is estimated from the superposition of voltage drop elementary events related to the subsequent resistive layers. At the end of the transition, the layers mix-up, the step amplitude decreases and the resistance curve smoothes. This results in the suppression of noise, as experimentally found. Remarkably, a scaling law for the noise intensity with the network size is argued. It allows to extend the results to networks with arbitrary size and, thus, to real specimens.
We analyze the complex interplay of the strong correlations and impurities in a high temperature superconductor and show that both the nature and degree of the inhomogeneities at zero temperature in the local order parameters change drastically from what are obtained in a simple Hartree-Fock-Bogoliubov theory. While both the strong electronic repulsions and disorder contribute to the nanoscale inhomogeneity in the population of charge-carriers, we find them to compete with each other leading to a relatively smooth variation of the local density. Our self-consistent calculations modify the spatial fluctuations in the pairing amplitude by suppressing all the double-occupancy within a Gutzwiller formalism and prohibit the formation of distinct superconducting-`islands. In contrast, presence of such `islands controls the outcome if strong correlations are neglected. The reorganization of the spatial structures in the Gutzwiller method makes these superconductors surprisingly insensitive to the impurities. This is illustrated by a very weak decay of superfluid stiffness, off-diagonal long range order and local density of states up to a large disorder strength. Exploring the origin of such a robustness we conclude that the underlying one-particle normal states reshape in a rich manner, such that the superconductor formed by pairing these states experiences a weaker but spatially correlated effective disorder. Such a route to superconductivity is evocative of Andersons theorem. Our results capture the key experimental trends in the cuprates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا