Do you want to publish a course? Click here

Tunneling and Magnetic Characteristics of Superconducting ZrB$_{12}$ Single Crystals

159   0   0.0 ( 0 )
 Added by Menachem Tsindlekht
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bulk and surface properties of high-quality single crystals of zirconium dodecaboride have been studied in the temperature range from 4.5 K up to the superconducting transition temperature which is found to be nearly 6.06 K. Scanning tunnelling spectroscopy data, together with dc and ac magnetization measurements, are consistent with the conventional s-wave pairing scenario, whereas they disagree in estimates of the electron-phonon coupling strength. We explain the divergence, supposing a great difference between the surface and bulk superconducting characteristics of the compound. This assertion is supported by our findings of a non-linear magnetic response to an amplitude-modulated alternating magnetic field, testifying to the presence of surface superconductivity in the ZrB$_{12}$ samples at dc fields exceeding the thermodynamic critical field.



rate research

Read More

We report experimental studies of the low frequency electrodynamics of ZrB$_{12}$ and Nb single crystals. AC susceptibility at frequencies 3 - 1000 Hz have been measured under a dc magnetic field, $H_0$, applied parallel to the sample surface. In the surface superconducting state, for several $H_0$, the real part of the ac magnetic susceptibility exhibits a logarithmic frequency dependence as for spin-glass systems. Kramers-Kronig analysis of the experimental data, shows large losses at ultra low frequencies ($<3$ Hz). The wave function slope at the surface was found. The linear response of the order parameter to the ac excitation was extracted from the experimental data.
The large nonlinear response of a single crystal ZrB$_{12}$ to an ac field (frequency 40 - 2500 Hz) for $H_0>H_{c2}$ has been observed. Direct measurements of the ac wave form and the exact numerical solution of the Ginzburg-Landau equations, as well as phenomenological relaxation equation, permit the study of the surface superconducting states dynamics. It is shown, that the low frequency response is defined by transitions between the metastable superconducting states under the action of an ac field. The relaxation rate which determines such transitions dynamics, is found.
The results of the comprehensive ultrasonic research of high quality single crystals of FeSe are presented. Absolute values of sound velocities and their temperature dependences were measured; elastic constants and Debye temperature were calculated. The elastic C11-C12 and C11 constants undergo significant softening under the structural tetra-ortho transformation. The significant influence of the superconducting transition on the velocity and attenuation of sound was revealed and the value of the superconducting energy gap was estimated.
We report optical (6 meV - 4 eV) properties of a boride superconductor ZrB$_{12}$ ($T_c$ = 6 K) in the normal state from 20 to 300 K measured on high-quality single crystals by a combination of reflectivity and ellipsometry. The Drude plasma frequency and interband optical conductivity calculated by self-consistent full-potential LMTO method agree well with experimental data. The Eliashberg function $alpha_{tr}^2F(omega)$ extracted from optical spectra features two peaks at about 25 and 80 meV, in agreement with specific heat data. The total coupling constant is $lambda_{tr}=1.0pm0.35$. The low energy peak presumably corresponds to the displacement mode of Zr inside $B_{24}$ cages, while the second one involves largely boron atoms. In addition to the usual narrowing of the Drude peak with cooling down, we observe an unexpected removal of about 10 % of the Drude spectral weight which is partially transferred to the region of the lowest-energy interband transition ($sim$ 1 eV). This effect may be caused by the delocalization of the metal ion from the center of the $B_{24}$ cluster.
Single crystals of RbOs2O6 have been grown from Rb2O and Os in sealed quartz ampoules. The crystal structure has been identified at room temperature as cubic with the lattice constant a = 10.1242(12) A. The anisotropy of the tetrahedral and octahedral networks is lower and the displacement parameters of alkali metal atoms are smaller than for KOs2O6, so the rattling of the alkali atoms in RbOs2O6 is less pronounced. Superconducting properties of RbOs2O6 in the mixed state have been well described within the London approach and the Ginzburg-Landau parameter kappa(0) = 31 has been derived from the reversible magnetization. This parameter is field dependent and changes at low temperatures from kappa = 22 (low fields) to kappa = 31 at H_{c2}. The thermodynamic critical field H_{c}(0) = 1.3 kOe and the superconducting gap 2delta/k_{B}T_{c} = 3.2 have been estimated. These results together with slightly different H_{c2}(T) dependence obtained for crystals and polycrystalline RbOs2O6 proof evidently that this compound is a weak-coupling BCS-type superconductor close to the dirty limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا