Do you want to publish a course? Click here

Theory of Insulator Metal Transition and Colossal Magnetoresistance in Doped Manganites

131   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The persistent proximity of insulating and metallic phases, a puzzling characterestic of manganites, is argued to arise from the self organization of the twofold degenerate e_g orbitals of Mn into localized Jahn-Teller(JT) polaronic levels and broad band states due to the large electron - JT phonon coupling present in them. We describe a new two band model with strong correlations and a dynamical mean-field theory calculation of equilibrium and transport properties. These explain the insulator metal transition and colossal magnetoresistance quantitatively, as well as other consequences of two state coexistence.



rate research

Read More

The electronic properties of many transition metal oxide systems require new ideas concerning the behaviour of electrons in solids for their explanation. A recent example, subsequent to that of cuprate superconductors, is of rare earth manganites doped with alkaline earths, namely $Re_{1-x}A_x MnO_3$, which exhibit colossal magnetoresistance, metal insulator transition and many other poorly understood phenomena. Here we show that the strong Jahn Teller coupling between the twofold degenerate ($d_{x^2 -y^2}$ and $d_{3z^2 -r^2}$) $e_g$ orbitals of $Mn$ and lattice modes of vibration (of the oxygen octahedra surrounding the $Mn$ ions) dynamically reorganizes the former into a set of states (which we label $ell$) which are localized with large local lattice distortion and exponentially small intersite overlap, and another set (labelled $b$) which form a broad band. This hitherto unsuspected but microscopically inevitable $coexistence$ of radically different $ell$ and $b$ states, and their relative energies and occupation as influenced by doping $x$, temperature $T$, local Coulomb repulsion $U$ etc., underlies the unique effects seen in manganites. We present results from strong correlation calculations using the dynamical mean-field theory which accord with a variety of observations in the orbital liquid regime (say, for $0.2stackrel{<}sim x stackrel{<}sim 0.5$).We outline extensions to include intersite $ell$ coherence and spatial correlations/long range order.
We study the transition at T=0 from a ferromagnetic insulating to a ferromagnetic metallic phase in manganites as a function of hole doping using an effective low-energy model Hamiltonian proposed by us recently. The model incorporates the quantum nature of the dynamic Jahn-Teller(JT) phonons strongly coupled to orbitally degenerate electrons as well as strong Coulomb correlation effects and leads naturally to the coexistence of localized (JT polaronic) and band-like electronic states. We study the insulator-metal transition as a function of doping as well as of the correlation strength U and JT gain in energy E_{JT}, and find, for realistic values of parameters, a ground state phase diagram in agreement with experiments. We also discuss how several other features of manganites as well as differences in behaviour among manganites can be understood in terms of our model.
204 - M. Zhu , J. Peng , T. Zou 2018
We present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca$_3$Ru$_2$O$_7$. Such an insulator-metal transition is accompanied by changes in both lattice and magnetic structures. Our findings have important implications because a magnetic field usually stabilizes the insulating ground state in a Mott-Hubbard system, thus calling for a deeper theoretical study to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities and spin-lattice-charge coupling. This study further provides a model approach to search for CMR systems other than manganites, such as Mott insulators in the vicinity of the boundary between competing phases.
Here we investigate antiferromagnetic Eu$_{5}$In$_{2}$Sb$_{6}$, a nonsymmorphic Zintl phase. Our electrical transport data show that Eu$_{5}$In$_{2}$Sb$_{6}$ is remarkably insulating and exhibits an exceptionally large negative magnetoresistance, which is consistent with the presence of magnetic polarons. From {it ab initio} calculations, the paramagnetic state of Eu$_{5}$In$_{2}$Sb$_{6}$ is a topologically nontrivial semimetal within the generalized gradient approximation (GGA), whereas an insulating state with trivial topological indices is obtained using a modified Becke-Johnson potential. Notably, GGA+U calculations suggest that the antiferromagnetic phase of Eu$_{5}$In$_{2}$Sb$_{6}$ may host an axion insulating state. Our results provide important feedback for theories of topological classification and highlight the potential of realizing clean magnetic narrow-gap semiconductors in Zintl materials.
142 - C. Jozwiak , J. Graf , S.Y. Zhou 2009
By performing angle-resolved photoemission spectroscopy of the bilayer colossal magnetoresistive (CMR) manganite, $La_{2-2x}Sr_{1+2x}Mn_{2}O_{7}$, we provide the complete mapping of the Fermi level spectral weight topology. Clear and unambiguous bilayer splitting of the in-plane 3d$_{x^2-y^2}$ band, mapped throughout the Brillouin zone, and the full mapping of the 3d$_{3z^2-r^2}$ band are reported. Peculiar doping and temperature dependencies of these bands imply that as transition from the ferromagnetic metallic phase approaches, either as a function of doping or temperature, coherence along the c-axis between planes within the bilayer is lost, resulting in reduced interplane coupling. These results suggest that interplane coupling plays a large role in the CMR transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا