Do you want to publish a course? Click here

Spectral Density Functionals for Electronic Structure Calculations

75   0   0.0 ( 0 )
 Added by Savrassov Serguei
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a spectral density functional theory which can be used to compute energetics and spectra of real strongly--correlated materials using methods, algorithms and computer programs of the electronic structure theory of solids. The approach considers the total free energy of a system as a functional of a local electronic Green function which is probed in the region of interest. Since we have a variety of notions of locality in our formulation, our method is manifestly basis--set dependent. However, it produces the exact total energy and local excitational spectrum provided that the exact functional is extremized. The self--energy of the theory appears as an auxiliary mass operator similar to the introduction of the ground--state Kohn--Sham potential in density functional theory. It is automatically short--ranged in the same region of Hilbert space which defines the local Green function. We exploit this property to find good approximations to the functional. For example, if electronic self--energy is known to be local in some portion of Hilbert space, a good approximation to the functional is provided by the corresponding local dynamical mean--field theory. A simplified implementation of the theory is described based on the linear muffin--tin orbital method widely used in electronic strucure calculations. We demonstrate the power of the approach on the long--standing problem of the anomalous volume expansion of metallic plutonium.



rate research

Read More

183 - Eva Pavarini 2014
The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method are (i) building material-specific Hubbard-like many-body models and (ii) solving them in the dynamical mean-field approximation. Step (i) requires the construction of a localized one-electron basis, typically a set of Wannier functions. It also involves a number of approximations, such as the choice of the degrees of freedom for which many-body effects are explicitly taken into account, the scheme to account for screening effects, or the form of the double-counting correction. Step (ii) requires the dynamical mean-field solution of multi-orbital generalized Hubbard models. Here central is the quantum-impurity solver, which is also the computationally most demanding part of the full LDA+DMFT approach. In this chapter I will introduce the core aspects of the LDA+DMFT method and present a prototypical application.
We present a review of the basic ideas and techniques of the spectral density functional theory which are currently used in electronic structure calculations of strongly-correlated materials where the one-electron description breaks down. We illustrate the method with several examples where interactions play a dominant role: systems near metal-insulator transition, systems near volume collapse transition, and systems with local moments.
156 - L. Petit , A. Svane , Z. Szotek 2009
The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density (SIC-LSD) approximation. Emphasis is put on the degree of f-electron localization, which for AO2 and A2O3 is found to follow the stoichiometry, namely corresponding to A(4+) ions in the dioxide and A(3+) ions in the sesquioxides. In contrast, the A(2+) ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction of the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onwards. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground state configurations of the corresponding lanthanide oxides. The ionic nature of the actinide oxides emerges from the fact that only those compounds will form where the calculated ground state valency agrees with the nominal valency expected from a simple charge counting.
117 - G. Kotliar , S.Y. Savrasov 2002
We review the basic ideas of the dynamical mean field theory (DMFT) and some of the insights into the electronic structure of strongly correlated electrons obtained by this method in the context of model Hamiltonians. We then discuss the perspectives for carrying out more realistic DMFT studies of strongly correlated electron systems and we compare it with existent methods, LDA and LDA+U. We stress the existence of new functionals for electronic structure calculations which allow us to treat situations where the single--particle description breaks down such as the vicinity of the Mott transition.
Vanadium disulfide (VS_{2}) attracts elevated interests for its charge-density wave (CDW) phase transition, ferromagnetism, and catalytic reactivity, but the electronic structure of monolayer has not been well understood yet. Here we report synthesis of epitaxial 1T VS_{2} monolayer on bilayer graphene grown by molecular-beam epitaxy (MBE). Angle-resolved photoemission spectroscopy (ARPES) measurements reveal that Fermi surface with six elliptical pockets centered at the M points shows gap opening at low temperature. Temperature-dependence of the gap size suggests existence of CDW phase transition above room temperature. Our observations provide important evidence to understand the strongly correlated electron physics and the related surface catalytic properties in two-dimensional transition-metal dichalcogenides (TMDCs).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا