Do you want to publish a course? Click here

No-soliton--soliton phase transition in a trapped one-dimensional Bose gas

111   0   0.0 ( 0 )
 Added by Vanja Dunjko
 Publication date 2003
  fields Physics
and research's language is English
 Authors Vanja Dunjko




Ask ChatGPT about the research

Following the experimental observation of bright matter-wave solitons [L. Khaykovich et al., Science v. 296, 1290 (2002); K. E. Strecker et al., Nature (London) v. 417, 150 (2002)], we develop a semi-phenomenological theory for soliton thermodynamics and find the condensation temperature. Under a modified thermodynamic limit, the condensate occupation at the critical temperature undergoes a sudden jump to a nonzero value, indicating a discontinuous phase transition. Treating the condensation as a diffusion over a barrier shows that the condensation time is exponentially long as one approaches the thermodynamic limit, and the longest near the critical temperature.



rate research

Read More

We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles. To demonstrate our technique, we calculate the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases.
Soliton hydrodynamics is an appealing tool to describe strong turbulence in low-dimensional systems. Strong turbulence in quasi-one dimensional spuerfluids, such as Bose-Einstein condensates, involves the dynamics of dark solitons and, therefore, the description of a statistical ensemble of dark-solitons, i.e. soliton gases, is necessary. In this work, we propose a phase-space (kinetic) description of dark-soliton gases, introducing a kinetic equation that is formally similar to the Vlasov equation in plasma physics. We show that the proposed kinetic theory can capture the dynamical features of soliton gases and show that it sustains an acoustic mode, a fact that we corroborate with the help of direct numerical simulations. Our findings motivate the investigation of the microscopic structure of out-of-equilibrium and turbulent regimes in low-dimensional superfluids.
We study the ground state of a one-dimensional (1D) trapped Bose gas with two mobile impurity particles. To investigate this set-up, we develop a variational procedure in which the coordinates of the impurity particles are slow-like variables. We validate our method using the exact results obtained for small systems. Then, we discuss energies and pair densities for systems that contain of the order of one hundred atoms. We show that bosonic non-interacting impurities cluster. To explain this clustering, we calculate and discuss induced impurity-impurity potentials in a harmonic trap. Further, we compute the force between static impurities in a ring ({it {`a} la} the Casimir force), and contrast the two effective potentials: the one obtained from the mean-field approximation, and the one due to the one-phonon exchange. Our formalism and findings are important for understanding (beyond the polaron model) the physics of modern 1D cold-atom systems with more than one impurity.
For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the inevitable diffusive rearrangements between the quasiparticles, quantified by the diffusion constants of the gas, eventually lead the system to thermalise at late times. We show that the full thermalising dynamics can be described by the generalised hydrodynamics with diffusion and force terms, and we compare these predictions with numerical simulations. Finally, we provide an explanation for the slow thermalisation rates observed in numerical and experimental settings: the hydrodynamics of integrable models is characterised by a continuity of modes, which can have arbitrarily small diffusion coefficients. As a consequence, the approach to thermalisation can display pre-thermal plateau and relaxation dynamics with long polynomial finite-time corrections.
Most experimental observations of solitons are limited to one-dimensional (1D) situations, where they are naturally stable. For instance, in 1D cold Bose gases, they exist for any attractive interaction strength $g$ and particle number $N$. By contrast, in two dimensions, solitons appear only for discrete values of $gN$, the so-called Townes soliton being the most celebrated example. Here, we use a two-component Bose gas to prepare deterministically such a soliton: Starting from a uniform bath of atoms in a given internal state, we imprint the soliton wave function using an optical transfer to another state. We explore various interaction strengths, atom numbers and sizes, and confirm the existence of a solitonic behaviour for a specific value of $gN$ and arbitrary sizes, a hallmark of scale invariance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا