Do you want to publish a course? Click here

Towards a kinetic theory of a dark soliton gas in one-dimensional superfluids

89   0   0.0 ( 0 )
 Added by Hugo Ter\\c{c}as
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Soliton hydrodynamics is an appealing tool to describe strong turbulence in low-dimensional systems. Strong turbulence in quasi-one dimensional spuerfluids, such as Bose-Einstein condensates, involves the dynamics of dark solitons and, therefore, the description of a statistical ensemble of dark-solitons, i.e. soliton gases, is necessary. In this work, we propose a phase-space (kinetic) description of dark-soliton gases, introducing a kinetic equation that is formally similar to the Vlasov equation in plasma physics. We show that the proposed kinetic theory can capture the dynamical features of soliton gases and show that it sustains an acoustic mode, a fact that we corroborate with the help of direct numerical simulations. Our findings motivate the investigation of the microscopic structure of out-of-equilibrium and turbulent regimes in low-dimensional superfluids.



rate research

Read More

The average-density approximation is used to construct a nonlocal kinetic energy functional for an inhomogeneous two-dimensional Fermi gas. This functional is then used to formulate a Thomas-Fermi von Weizsacker-like theory for the description of the ground state properties of the system. The quality of the kinetic energy functional is tested by performing a fully self-consistent calculation for an ideal, harmonically confined, two-dimensional system. Good agreement with exact results are found, with the number and kinetic energy densities exhibiting oscillatory structure associated with the nonlocality of the energy functional. Most importantly, this functional shows a marked improvement over the two-dimensional Thomas-Fermi von Weizsacker theory, particularly in the vicinity of the classically forbidden region.
We study quantum dynamics of a dark soliton in a one-dimensional Bose gas in an optical lattice within the truncated Wigner approximation. A previous work has revealed that in the absence of quantum fluctuations, dynamical stability of the dark soliton significantly depends on whether its phase kink is located at a lattice site or a link of two neighboring sites. It has also shown that the dark soliton is unstable in a regime of strong quantum fluctuations regardless of the phase-kink position. To bridge the gap between the classical and strongly quantum regimes, we investigate the dynamical stability of the dark soliton in a regime of weak quantum fluctuations. We find that the position dependence of the dynamical stability gradually diminishes and eventually vanishes as the strength of quantum fluctuations increases. This classical-to-quantum crossover of the soliton stability remains even in the presence of a parabolic trapping potential. We suggest that the crossover behavior can be used for experimentally diagnosing whether the instability of a dark soliton is due to quantum fluctuations or classical dynamical instability.
We carry out extensive direct numerical simulations (DNSs) to investigate the interaction of active particles and fields in the two-dimensional (2D) Gross-Pitaevskii (GP) superfluid, in both simple and turbulent flows. The particles are active in the sense that they affect the superfluid even as they are affected by it. We tune the mass of the particles, which is an important control parameter. At the one-particle level, we show how light, neutral, and heavy particles move in the superfluid, when a constant external force acts on them; in particular, beyond a critical velocity, at which a vortex-antivortex pair is emitted, particle motion can be periodic or chaotic. We demonstrate that the interaction of a particle with vortices leads to dynamics that depends sensitively on the particle characteristics. We also demonstrate that assemblies of particles and vortices can have rich, and often turbulent spatiotemporal evolution. In particular, we consider the dynamics of the following illustrative initial configurations: (a) one particle placed in front of a translating vortex-antivortex pair; (b) two particles placed in front of a translating vortex-antivortex pair; (c) a single particle moving in the presence of counter-rotating vortex clusters; and (d) four particles in the presence of counter-rotating vortex clusters. We compare our work with earlier studies and examine its implications for recent experimental studies in superfluid Helium and Bose-Einstein condensates.
We outline a kinetic theory of non-thermal fixed points for the example of a dilute Bose gas, partially reviewing results obtained earlier, thereby extending, complementing, generalizing and straightening them out. We study universal dynamics after a cooling quench, focusing on situations where the time evolution represents a pure rescaling of spatial correlations, with time defining the scale parameter. The non-equilibrium initial condition set by the quench induces a redistribution of particles in momentum space. Depending on conservation laws, this can take the form of a wave-turbulent flux or of a more general self-similar evolution, signaling the critically slowed approach to a non-thermal fixed point. We identify such fixed points using a non-perturbative kinetic theory of collective scattering between highly occupied long-wavelength modes. In contrast, a wave-turbulent flux, possible in the perturbative Boltzmann regime, builds up in a critically accelerated self-similar manner. A key result is the simple analytical universal scaling form of the non-perturbative many-body scattering matrix, for which we lay out the concrete conditions under which it applies. We derive the scaling exponents for the time evolution as well as for the power-law tail of the momentum distribution function, for a general dynamical critical exponent $z$ and an anomalous scaling dimension $eta$. The approach of the non-thermal fixed point is, in particular, found to involve a rescaling of momenta in time $t$ by $t^{beta}$, with $beta=1/z$, within our kinetic approach independent of $eta$. We confirm our analytical predictions by numerically evaluating the kinetic scattering integral as well as the non-perturbative many-body coupling function. As a side result we obtain a possible finite-size interpretation of wave-turbulent scaling recently measured by Navon et al.
We simulate a balanced attractively interacting two-component Fermi gas in a one-dimensional lattice perturbed with a moving potential well or barrier. Using the time-evolving block decimation method, we study different velocities of the perturbation and distinguish two velocity regimes based on clear differences in the time evolution of particle densities and the pair correlation function. We show that, in the slow regime, the densities deform as particles are either attracted by the potential well or repelled by the barrier, and a wave front of hole or particle excitations propagates at the maximum group velocity. Simultaneously, the initial pair correlations are broken and coherence over different sites is lost. In contrast, in the fast regime, the densities are not considerably deformed and the pair correlations are preserved.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا