Do you want to publish a course? Click here

Realization of a Townes soliton in a two-component planar Bose gas

303   0   0.0 ( 0 )
 Added by Jerome Beugnon
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Most experimental observations of solitons are limited to one-dimensional (1D) situations, where they are naturally stable. For instance, in 1D cold Bose gases, they exist for any attractive interaction strength $g$ and particle number $N$. By contrast, in two dimensions, solitons appear only for discrete values of $gN$, the so-called Townes soliton being the most celebrated example. Here, we use a two-component Bose gas to prepare deterministically such a soliton: Starting from a uniform bath of atoms in a given internal state, we imprint the soliton wave function using an optical transfer to another state. We explore various interaction strengths, atom numbers and sizes, and confirm the existence of a solitonic behaviour for a specific value of $gN$ and arbitrary sizes, a hallmark of scale invariance.



rate research

Read More

We report on the static and dynamical properties of multiple dark-antidark solitons (DADs) in two-component, repulsively interacting Bose-Einstein condensates. Motivated by experimental observations involving multiple DADs, we present a theoretical study which showcases that bound states consisting of dark (antidark) solitons in the first (second) component of the mixture exist for different values of interspecies interactions. It is found that ensembles of few DADs may exist as stable configurations, while for larger DAD arrays, the relevant windows of stability with respect to the interspecies interaction strength become progressively narrower. Moreover, the dynamical formation of states consisting of alternating DADs in the two components of the mixture is monitored. A complex dynamical evolution of these states is observed, leading either to sorted DADs or to beating dark-dark solitons depending on the strength of the interspecies coupling. This study demonstrates clear avenues for future investigations of DAD configurations.
In this work, we explore systematically various SO(2)-rotation-induced multiple dark-dark soliton breathing patterns obtained from stationary and spectrally stable multiple dark-bright and dark-dark waveforms in trapped one-dimensional, two-component atomic Bose-Einstein condensates (BECs). The stationary states stem from the associated linear limits (as the eigenfunctions of the quantum harmonic oscillator problem) and are parametrically continued to the nonlinear regimes by varying the respective chemical potentials, i.e., from the low-density linear limits to the high-density Thomas-Fermi regimes. We perform a Bogolyubov-de Gennes (BdG) spectral stability analysis to identify stable parametric regimes of these states. Upon SO(2)-rotation, the stable steady-states, one-, two-, three-, four-, and many dark-dark soliton breathing patterns are observed in the numerical simulations. Furthermore, analytic solutions up to three dark-bright solitons in the homogeneous setting, and three-component systems are also investigated.
We characterize the immiscibility-miscibility transition (IMT) of a two-component Bose-Einstein condensate (BEC) with dipole-dipole interactions. In particular, we consider the quasi-two dimensional geometry, where a strong trapping potential admits only zero-point motion in the trap direction, while the atoms are more free to move in the transverse directions. We employ the Bogoliubov treatment of the two-component system to identify both the well-known long-wavelength IMT in addition to a roton-like IMT, where the transition occurs at finite-wave number and is reminiscent of the roton softening in the single component dipolar BEC. Additionally, we verify the existence of the roton IMT in the fully trapped, finite systems by direct numerical simulation of the two-component coupled non-local Gross-Pitaevskii equations.
We examine the effect of the intra- and interspecies scattering lengths on the dynamics of a two-component Bose-Einstein condensate, particularly focusing on the existence and stability of solitonic excitations. For each type of possible soliton pairs stability ranges are presented in tabulated form. We also compare the numerically established stability of bright-bright, bright-dark and dark-dark solitons with our analytical prediction and with that of Painleve-analysis of the dynamical equation. We demonstrate that tuning the inter-species scattering length away from the predicted value (keeping the intra-species coupling fixed) breaks the stability of the soliton pairs.
136 - Sagarika Basak , Han Pu 2021
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within same site and neighboring sites leads to substantial change in the previously observed spin phases revealing fascinating remarkable spin correlations. In the presence of strong interactions it gives rise to unconventional effective ordering of the spins leading to unprecedented spin phases: site-dependent $ztextsf{-}x$ spin configuration with tunable (by hopping parameter) proclivity of spin alignment along $z$. Exact analysis and Variational Monte Carlo (VMC) along with stochastic minimization on Entangled Plaquette State (EPS) bestow a unique and enhanced perspective into the system beyond the scope of mean-field treatment. The physics of complex intra-component tunneling and inter-component coupling and filling factor greater than unity are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا