Do you want to publish a course? Click here

Superconducting Properties of MgCNi3 Films

122   0   0.0 ( 0 )
 Added by Philip W. Adams
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the magnetotransport properties of thin polycrystalline films of the recently discovered non-oxide perovskite superconductor MgCNi3. CNi3 precursor films were deposited onto sapphire substrates and subsequently exposed to Mg vapor at 700 C. We report transition temperatures (Tc) and critical field values (Hc2) of MgCNi3 films ranging in thickness from 7.5 nm to 100 nm. Films thicker than ~40 nm have a Tc ~ 8 K, and an upper critical field Hc2 ~ 14 T, which are both comparable to that of polycrystalline powders. Hall measurements in the normal state give a carrier density, n =-4.2 x 10^22 cm^-3, that is approximately 4 times that reported for bulk samples.



rate research

Read More

To understand the role of electron-phonon interaction in superconducting MgCNi$_{3}$ we have performed density functional based linear response calculations of its lattice dynamical properties. A large coupling constant $% lambda $= 1.51 is predicted and contributing phonons are identified as displacements of Ni atoms towards octahedral interstitials of the perovskite lattice. Instabilities found for some vibrational modes emphasize the role of anharmonic effects in resolving experimental controversies.
Single crystals of RbOs2O6 have been grown from Rb2O and Os in sealed quartz ampoules. The crystal structure has been identified at room temperature as cubic with the lattice constant a = 10.1242(12) A. The anisotropy of the tetrahedral and octahedral networks is lower and the displacement parameters of alkali metal atoms are smaller than for KOs2O6, so the rattling of the alkali atoms in RbOs2O6 is less pronounced. Superconducting properties of RbOs2O6 in the mixed state have been well described within the London approach and the Ginzburg-Landau parameter kappa(0) = 31 has been derived from the reversible magnetization. This parameter is field dependent and changes at low temperatures from kappa = 22 (low fields) to kappa = 31 at H_{c2}. The thermodynamic critical field H_{c}(0) = 1.3 kOe and the superconducting gap 2delta/k_{B}T_{c} = 3.2 have been estimated. These results together with slightly different H_{c2}(T) dependence obtained for crystals and polycrystalline RbOs2O6 proof evidently that this compound is a weak-coupling BCS-type superconductor close to the dirty limit.
The superconducting gap Delta has been measured in Bi2Sr2-xLaxCuO6+d single crystals in a wide range of temperatures 4.2 K < T < Tc by point-contact and tunnelling spectroscopy for current in c-direction. The value of Delta(4.2 K) was found to scale with the critical temperature Tc in the whole range of doping levels with the ratio 2D/kTc = 12.5 +/- 2. The closing of the gap Ds at T = Tc has been registered in the underdoped, optimally doped as well as in the overdoped sam-ples.
The pairing mechanism in cuprates remains as one of the most challenging issues in the field of condensed matter physics. The unique 3d9 electron orbital of the Cu2+ ionic states in cuprates is supposed to be the major player for the occurrence of superconductivity. Recently, superconductivity at about 9-15 K was discovered in infinite layer thin films of nickelate Nd1-xSrxNiO2 (x=0.1-0.2) which is believed to have the similar 3d9 orbital electrons. The key issue concerned here is about the superconducting gap function. Here we report the first set data of single particle tunneling measurements on the superconducting nickelate thin films. We find predominantly two types of tunneling spectra, one shows a V-shape feature which can be fitted very well by a d-wave gap function with gap maximum of about 3.9 meV, another one exhibits a full gap of about 2.35 meV. Some spectra demonstrate mixed contributions of these two components. Our results suggest that the newly found Ni-based superconductors play as close analogs to cuprates, and thus demonstrate the commonality of unconventional superconductivity.
149 - Y.G. Shi , S. Yu , A.A. Belik 2008
The iron oxyarsenide TbFeAsO0.85 was synthesized by a high-pressure method. A high-quality polycrystalline sample was obtained and characterized by measurements of magnetic susceptibility and electrical resistivity. Bulk superconductivity with Tc of 42 K was clearly established without an F doping usually conducted to tune on superconductivity in the iron oxypnictide.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا