To understand the role of electron-phonon interaction in superconducting MgCNi$_{3}$ we have performed density functional based linear response calculations of its lattice dynamical properties. A large coupling constant $% lambda $= 1.51 is predicted and contributing phonons are identified as displacements of Ni atoms towards octahedral interstitials of the perovskite lattice. Instabilities found for some vibrational modes emphasize the role of anharmonic effects in resolving experimental controversies.
We report the magnetotransport properties of thin polycrystalline films of the recently discovered non-oxide perovskite superconductor MgCNi3. CNi3 precursor films were deposited onto sapphire substrates and subsequently exposed to Mg vapor at 700 C. We report transition temperatures (Tc) and critical field values (Hc2) of MgCNi3 films ranging in thickness from 7.5 nm to 100 nm. Films thicker than ~40 nm have a Tc ~ 8 K, and an upper critical field Hc2 ~ 14 T, which are both comparable to that of polycrystalline powders. Hall measurements in the normal state give a carrier density, n =-4.2 x 10^22 cm^-3, that is approximately 4 times that reported for bulk samples.
We report our study of the evolution of superconductivity and the phase diagram of the ternary Fe(Se1-xTex)0.82 (0<=x<=1.0) system. We discovered a new superconducting phase with Tc,max = 14 K in the 0.3 < x < 1.0 range. This superconducting phase is suppressed when the sample composition approaches the end member FeTe0.82, which exhibits an incommensurate antiferromagnetic order. We discuss the relationship between the superconductivity and magnetism of this material system in terms of recent results from neutron scattering measurements. Our results and analyses suggest that superconductivity in this new class of Fe-based compounds is associated with magnetic fluctuations, and therefore may be unconventional in nature.
Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d-wave superconductivity is studied for the repulsive Hubbard model on the square lattice with the dynamical mean field theory combined with the fluctuation exchange approximation (FLEX+DMFT). We show that the four-fold symmetric Fermi surface becomes unstable against a spontaneous distortion into two-fold near the van Hove filling, where the symmetry of superconductivity coexisting with the Pomeranchuk distorted Fermi surface is modified from the d-wave pairing to (d+s)-wave. By systematically shifting the position of van Hove filling with varied second- and third-neighbor hoppings, we find that the transition temperature $T_{rm c}^{rm PI}$ of Pomeranchuk instability is more sensitively affected by the position of van Hove filling than the superconducting $T_{rm c}^{rm SC}$. This implies that the filling region for strong Pomeranchuk instability and that for strong superconducting fluctuations can be separated, and Pomeranchuk instability can appear even if the peak of $T_c^{rm PI}$ is lower than the peak of $T_c^{rm SC}$. An interesting observation is that the Fermi surface distortion can enhance the superconducting $T_{rm c}^{rm SC}$ in the overdoped regime, which is explained with a perturbation picture for small distortions.
The Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state near the antiferromagnetic quantum critical point (AFQCP) is investigated by analyzing the two dimensional Hubbard model on the basis of the fluctuation exchange (FLEX) approximation. The phase diagram against the magnetic field and temperature is compared with that obtained in the BCS theory. We discuss the influences of the antiferromagnetic spin fluctuation through the quasiparticle scattering, retardation effect, parity mixing and internal magnetic field. It is shown that the FFLO state is stable in the vicinity of AFQCP even though the quasiparticle scattering due to the spin fluctuation is destructive to the FFLO state. The large positive slope dH_{FFLO}/dT and the convex curvature (d^{2}H_{FFLO}/dT^{2} > 0) are obtained, where H_{FFLO} is the critical magnetic field for the second order phase transition from the uniform BCS state to the FFLO state. These results are consistent with the experimental results in CeCoIn_5. The possible magnetic transition in the FFLO state is examined.
The crystal structure of boron doped superconducting MgC_{1-x}{11}^B_{x}Ni_{3}, studied by powder neutron diffraction, is reported. The solubility limit of boron is determined to be approximately x=0.16. The unit cell expands from a = 3.81089(2) to 3.81966(2) Angstroms as x increases from x=0 to x=0.155. Boron ({11}^B) doping decreases Tc with increasing x: from 7.09K (x=0) to 6.44K (x=0.155).