Do you want to publish a course? Click here

Unconventional Upper- and Lower-Critical Fields and Normal-State Magnetic Susceptibility of the Novel Superconducting Compound $Na_{0.35} Co O_2 cdot 1.3 H_2O$

89   0   0.0 ( 0 )
 Added by Hiroya Sakurai
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic properties of the novel layered superconductor, Na$_{0.35}$CoO$_{2}$$cdot$1.3H$_{2}$O have been investigated. From the temperature dependence and field dependence of the magnetization, the superconducting transition temperature, as well as upper- and lower-critical fields have been estimated to be $T_{C}=4.6$ K, $H_{C2}(0)=61.0$ T and $H_{C1}(0)=28.1$ Oe. These values give quite unusual phenomenological parameters, textit{i.e.}, coherent length, penetration depth and Ginzburg-Landau parameter of $xi=2.32$ nm, $lambda=5.68times 10^{3}$ AA and $kappaequivlambda/xi=244$, suggesting an unconventional nature of superconductivity. Normal-state magnetic susceptibility shows an upturn below 130 K, which is confirmed to be inherent by high-field magnetization data. The upturn may have relevance to the mechanism of the superconductivity.



rate research

Read More

We report the in-plane resistivity and magnetic susceptibility of the layered cobalt oxide Na$_{0.35}$CoO$_{2}{cdot}1.3$H$_{2}$O single crystal. The temperature dependence of the resistivity shows metallic behavior from room temperature to the superconducting transition temperature $T_{c}$ of 4.5 K. Sharp resistive transition, zero resistivity and almost perfect superconducting volume fraction below $T_{c}$ indicate the good quality and the bulk superconductivity of the single crystal. The upper critical field $H_{c2}$ and the coherence length $xi$ are obtained from the resistive transitions in magnetic field parallel to the c-axis and the $ab$-plane. The anisotropy of $xi$, $xi_{ab} / xi_{c} =$ 12 nm/1.3 nm $simeq$ 9.2, suggests that this material is considered to be an anisotropic three dimensional superconductor. In the field parallel to the $ab$-plane, $H_{c2}$ seems to be suppressed to the value of Pauli paramagnetic limit. It may indicate the spin singlet superconductivity in the cobalt oxide.
We studied the specific heat and thermal conductivity of the spin-triplet superconductor Sr2RuO4 at low temperatures and under oriented magnetic fields H. We resolved a double peak structure of the superconducting transition under magnetic field for the first time, which provides thermodynamic evidence for the existence of multiple superconducting phases. We also found a clear limiting of the upper critical field Hc2 for the field direction parallel to the RuO2 plane only within 2 degrees. The limiting of Hc2 occurs in the same H-T domain of the second superconducting phase; we suggest that the two phenomena have the same physical origin.
93 - Maxime Leroux 2019
Non-linear electrical transport studies at high-pulsed magnetic fields, above the range accessible by DC magnets, are of direct fundamental relevance to the physics of superconductors, domain-wall, charge-density waves, and topological semi-metal. All-superconducting very-high field magnets also make it technologically relevant to study vortex matter in this regime. However, pulsed magnetic fields reaching 100 T in milliseconds impose technical and fundamental challenges that have prevented the realization of these studies. Here, we present a technique for sub-microsecond, smart, current-voltage measurements, which enables determining the superconducting critical current in pulsed magnetic fields, beyond the reach of any DC magnet. We demonstrate the excellent agreement of this technique with low DC field measurements on Y$_{0.77}$Gd$_{0.23}$Ba$_2$Cu$_3$O$_7$ coated conductors with and without BaHfO$_3$ nanoparticles. Exploring the uncharted high magnetic field region, we discover a characteristic influence of the magnetic field rate of change ($dH/dt$) on the current-voltage curves in a superconductor. We fully capture this unexplored vortex physics through a theoretical model based on the asymmetry of the vortex velocity profile produced by the applied current.
57 - H. Sakurai , K. Takada , F. Izumi 2003
In order to investigate the role of the water molecules in Na$_{0.35}$CoO$_{2}cdot$1.3H$_{2}$O, we synthesized superconducting Na$_{0.35}$CoO$_{2}cdot$1.3H$_{2}$O and nonsuperconducting Na$_{0.35}$CoO$_{2}cdot$0.7H$_{2}$O, and measured their normal-state magnetic susceptibilities. The susceptibility of Na$_{0.35}$CoO$_{2}cdot$1.3H$_{2}$O has an enhancement below ~150 K probably caused by ferromagnetic fluctuation, whereas no such enhancement was observed in Na$_{0.35}$CoO$_{2}cdot$0.7H$_{2}$O. The water molecules in Na$_{0.35}$CoO$_{2}cdot$1.3H$_{2}$O may work to shield random coulomb potential of the Na ions with smoother potential at the CoO$_{2}$ layer. This effect may account for the appearance of superconductivity in Na$_{0.35}$CoO$_{2}cdot$1.3H$_{2}$O.
We report complex ac magnetic susceptibility measurements of a superconducting transition in very high-quality single-crystal alpha-uranium using microfabricated coplanar magnetometers. We identify an onset of superconductivity at T~0.7 K in both the real and imaginary components of the susceptibility which is confirmed by resistivity data. A superconducting volume fraction argument, based on a comparison with a calibration YBCO sample, indicates that the superconductivity in these samples may be filamentary. Our data also demonstrate the sensitivity of the coplanar micro-magnetometers, which are ideally suited to measurements in pulsed magnetic fields exceeding 100 T.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا