No Arabic abstract
We propose to investigate flux qubits by the impedance measurement technique (IMT), currently used to determine the current--phase relation in Josephson junctions. We analyze in detail the case of a high-quality tank circuit coupled to a persistent-current qubit, to which IMT was successfully applied in the classical regime. It is shown that low-frequency IMT can give considerable information about the level anticrossing, in particular the value of the tunneling amplitude. An interesting difference exists between applying the ac bias directly to the tank and indirectly via the qubit. In the latter case, a convenient way to find the degeneracy point in situ is described. Our design only involves existing technology, and its noise tolerance is quantitatively estimated to be realistic.
We have observed signatures of resonant tunneling in an Al three-junction qubit, inductively coupled to a Nb LC tank circuit. The resonant properties of the tank oscillator are sensitive to the effective susceptibility (or inductance) of the qubit, which changes drastically as its flux states pass through degeneracy. The tunneling amplitude is estimated from the data. We find good agreement with the theoretical predictions in the regime of their validity.
We report measurements of macroscopic resonant tunneling between the two lowest energy states of a pair of magnetically coupled rf-SQUID flux qubits. This technique provides a direct means of observing two-qubit dynamics and a probe of the environment coupled to the pair of qubits. Measurements of the tunneling rate as a function of qubit flux bias show a Gaussian line shape that is well matched to theoretical predictions. Moreover, the peak widths indicate that each qubit is coupled to a local environment whose fluctuations are uncorrelated with that of the other qubit.
We use the density matrix formalism to analyze the interaction of interferometer-type superconducting qubits with a high quality tank circuit, which frequency is well below the gap frequency of a qubit. We start with the ground state characterization of the superconducting flux and charge qubits. Then, by making use of a dressed state approach we describe the qubits spectroscopy when the qubit is irradiated by a microwave field which is tuned to the gap frequency. The last section of the paper is devoted to continuous monitoring of qubit states by using a DC SQUID in the inductive mode.
We present experimental results on the crosstalk between two AC-operated dispersive bifurcation detectors, implemented in a circuit for high-fidelity readout of two strongly coupled flux qubits. Both phase-dependent and phase-independent contributions to the crosstalk are analyzed. For proper tuning of the phase the measured crosstalk is 0.1 % and the correlation between the measurement outcomes is less than 0.05 %. These results show that bifurcative readout provides a reliable and generic approach for multi-partite correlation experiments.
A general method for directly measuring the low-frequency flux noise (below 10 Hz) in compound Josephson junction superconducting flux qubits has been used to study a series of 85 devices of varying design. The variation in flux noise across sets of qubits with identical designs was observed to be small. However, the levels of flux noise systematically varied between qubit designs with strong dependence upon qubit wiring length and wiring width. Furthermore, qubits fabricated above a superconducting ground plane yielded lower noise than qubits without such a layer. These results support the hypothesis that localized magnetic impurities in the vicinity of the qubit wiring are a key source of low frequency flux noise in superconducting devices.