Do you want to publish a course? Click here

Observation of Co-tunneling in Pairs of Coupled Flux Qubits

242   0   0.0 ( 0 )
 Added by Trevor Lanting
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report measurements of macroscopic resonant tunneling between the two lowest energy states of a pair of magnetically coupled rf-SQUID flux qubits. This technique provides a direct means of observing two-qubit dynamics and a probe of the environment coupled to the pair of qubits. Measurements of the tunneling rate as a function of qubit flux bias show a Gaussian line shape that is well matched to theoretical predictions. Moreover, the peak widths indicate that each qubit is coupled to a local environment whose fluctuations are uncorrelated with that of the other qubit.

rate research

Read More

We propose to investigate flux qubits by the impedance measurement technique (IMT), currently used to determine the current--phase relation in Josephson junctions. We analyze in detail the case of a high-quality tank circuit coupled to a persistent-current qubit, to which IMT was successfully applied in the classical regime. It is shown that low-frequency IMT can give considerable information about the level anticrossing, in particular the value of the tunneling amplitude. An interesting difference exists between applying the ac bias directly to the tank and indirectly via the qubit. In the latter case, a convenient way to find the degeneracy point in situ is described. Our design only involves existing technology, and its noise tolerance is quantitatively estimated to be realistic.
We report the parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a measured gain of about 20 dB. We argue, that this arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with a large tunable Kerr nonlinearity.
We have studied decoherence in a system where two Josephson-junction flux qubits share a part of their superconducting loops and are inductively coupled. By tuning the flux bias condition, we control the sensitivities of the energy levels to flux noises in each qubit. The dephasing rate of the first excited state is enhanced or suppressed depending on the amplitudes and the signs of the sensitivities. We have quantified the $1/f$ flux noises and their correlations and found that the dominant contribution is by local fluctuations.
We present experimental results on the crosstalk between two AC-operated dispersive bifurcation detectors, implemented in a circuit for high-fidelity readout of two strongly coupled flux qubits. Both phase-dependent and phase-independent contributions to the crosstalk are analyzed. For proper tuning of the phase the measured crosstalk is 0.1 % and the correlation between the measurement outcomes is less than 0.05 %. These results show that bifurcative readout provides a reliable and generic approach for multi-partite correlation experiments.
It is sketched how a monostable rf- or dc-SQUID can mediate an inductive coupling between two adjacent flux qubits. The nontrivial dependence of the SQUIDs susceptibility on external flux makes it possible to continuously tune the induced coupling from antiferromagnetic (AF) to ferromagnetic (FM). In particular, for suitable parameters, the induced FM coupling can be sufficiently large to overcome any possible direct AF inductive coupling between the qubits. The main features follow from a classical analysis of the multi-qubit potential. A fully quantum treatment yields similar results, but with a modified expression for the SQUID susceptibility. Since the latter is exact, it can also be used to evaluate the susceptibility--or, equivalently, energy-level curvature--of an isolated rf-SQUID for larger shielding and at degenerate flux bias, i.e., a (bistable) qubit. The result is compared to the standard two-level (pseudospin) treatment of the anticrossing, and the ensuing conclusions are verified numerically.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا