No Arabic abstract
We present experimental results of electrical resistivity, Hall coefficient, magnetic susceptibility, and specific heat for single crystals of Ce-based intervalent compound CeNiSi$_2$. The results show similar behaviors observed in Yb-based intervalent compounds and support recent thoery of the Anderson lattice, in which the Fermi-liquid coherence is gloval over the whole lattice. There is a low-temperature scale $T_{coh} sim$ 50 K for the onset of Fermi-liquid coherence, in addition to a high-temperature scale $T_K^* sim$ 150 K for the Kondo-lattice condensation. Therefore, we conclude that two energy scales are generic in intermediate valence compounds based on Ce where the orbital degeneracy is smaller and where the size of the $4f$ orbital is larger than those based on Yb.
We report $^{31}$P NMR measurements under various magnetic fields up to 7 T for the intermediate valence compound EuNi$_2$P$_2$, which shows heavy electronic states at low temperatures. In the high-temperature region above 40 K, the Knight shift followed the Curie--Weiss law reflecting localized $4f$ states. In addition, the behavior corresponding to the temperature variation of the average valence of Eu was observed in the nuclear spin-lattice relaxation rate $1/T_1$. With the occurrence of the Kondo effect, $1/T_1$ was clearly reduced below 40 K, and the Knight shift becomes almost constant at low temperatures. From these results, the formation of heavy quasiparticles by the hybridization of Eu $4f$ electrons and conduction electrons was clarified from microscopic viewpoints. Furthermore, a characteristic spin fluctuation was observed at low temperatures, which would be associated with valence fluctuations caused by the intermediate valence state of EuNi$_2$P$_2$.
Yb$_2$Si$_2$Al may be a prototype for exploring different aspects of the Shastry-Sutherland lattice, formed by planes of orthogonally coupled Yb ions. Measurements of the magnetic susceptibility find incoherently fluctuating Yb$^{3+}$ moments coexisting with a weakly correlated metallic state that is confirmed by measurements of the electrical resistivity. Increasing signs of Kondo coherence are found with decreasing temperature, including an enhanced Sommerfeld coefficient and Kadowaki-Woods ratio that signal that the metallic state found at the lowest temperatures is a Fermi liquid where correlations have become significantly stronger. A pronounced peak in the electronic and magnetic specific heat indicates that the coupling of the Yb moments to the conduction electrons leads to an effective Kondo temperature that is approximately 30 K. The valence of Yb$_2$Si$_2$Al has been investigated with electron spectroscopy methods. Yb$_2$Si$_2$Al is found to be strongly intermediate valent ($v_F=2.68(2)$ at 80 K). Taken together, these experimental data are consistent with a scenario where a coherent Kondo lattice forms in Yb$_2$Si$_2$Al from an incoherently fluctuating ensemble of Yb moments with incomplete Kondo compensation, and strong intermediate valence character.
We report inelastic neutron scattering experiments on a single crystal of the intermediate valence compound CePd3. At 300 K the magnetic scattering is quasielastic, with halfwidth of 23 meV, and is independent of momentum transfer Q. At low temperature, the Q-averaged magnetic spectrum is inelastic, exhibiting a broad peak centered near Emax = 55 meV. These results, together with the temperature dependence of the susceptibility, 4f occupation number, and specific heat, can be fit by the Kondo/Anderson impurity model. The low temperature scattering near Emax, however, shows significant variations with Q, reflecting the coherence of the 4f lattice. The intensity is maximal at (1/2, 1/2,0), intermediate at (1/2,0,0) and (0,0,0), and weak at (1/2,1/2,1/2). We discuss this Q-dependence in terms of current ideas about coherence in heavy fermion systems.
We report on the single crystal growth and anisotropic physical properties of CeAgAs$_2$. The compound crystallizes as on ordered variant of the HfCuSi$_2$-type crystal structure and adopts the orthorhombic space group $Pmca$~(#57) with two symmetry inequivalent cerium atomic positions in the unit cell. The orthorhombic crystal structure of our single crystal was confirmed from the powder x-ray diffraction and from electron diffraction patterns obtained from the transmission electron microscope. The anisotropic physical properties have been investigated on a good quality single crystal by measuring the magnetic susceptibility, isothermal magnetization, electrical transport and heat capacity. The magnetic susceptibility and magnetization measurements revealed that this compound orders antiferromagnetically with two closely spaced magnetic transitions at $T_{rm N1} = 6$~K and $T_{rm N2} = 4.9$~K. Magnetization studies have revealed a large magnetocrystalline anisotropy due to the crystalline electric field (CEF) with an easy axis of magnetization along the [010] direction. The magnetic susceptibility measured along the [001] direction exhibited a broad hump in the temperature range 50 to 250~K, while typical Curie-Weiss behaviour was observed along the other two orthogonal directions. The electrical resistivity and the heat capacity measurements revealed that CeAgAs$_2$ is a Kondo lattice system with a magnetic ground state.
We present the crystal growth as well as the structural, chemical and physical chracterization of SmRh$_2$Si$_2$ single crystals. Their ground state is antiferromagnetic, as indicated by the behaviour of the magnetic susceptibility and the specific heat at the second order phase transition observed at T$_{rm N}$ = 64 K. The Sommerfeld coefficient is small and similar to that of LuRh$_2$Si$_2$ with $gamma_0approx$ J/(molK$^2$). Susceptibility measurements show no Curie-Weiss behaviour at high temperatures which is a consequence of the large Van-Vleck contribution of the excited multiplets of Sm$^{3+}$. Previous angle-resolved photoemission studies showed that at 10 K, the valence of the Sm ions is smaller than three at the surface as well as in the bulk, suggesting a possible Kondo screening of the Sm$^{3+}$ ions. This could not be observed in our thermodynamic and transport measurements.