No Arabic abstract
We present the crystal growth as well as the structural, chemical and physical chracterization of SmRh$_2$Si$_2$ single crystals. Their ground state is antiferromagnetic, as indicated by the behaviour of the magnetic susceptibility and the specific heat at the second order phase transition observed at T$_{rm N}$ = 64 K. The Sommerfeld coefficient is small and similar to that of LuRh$_2$Si$_2$ with $gamma_0approx$ J/(molK$^2$). Susceptibility measurements show no Curie-Weiss behaviour at high temperatures which is a consequence of the large Van-Vleck contribution of the excited multiplets of Sm$^{3+}$. Previous angle-resolved photoemission studies showed that at 10 K, the valence of the Sm ions is smaller than three at the surface as well as in the bulk, suggesting a possible Kondo screening of the Sm$^{3+}$ ions. This could not be observed in our thermodynamic and transport measurements.
We present a detailed study of the temperature evolution of the crystal structure, specific heat, magnetic susceptibility and resistivity of single crystals of the paradigmatic valence-fluctuating compound EuIr$_2$Si$_2$. A comparison to stable-valent isostructural compounds EuCo$_2$Si$_2$ (with Eu$^{3+}$), and EuRh$_2$Si$_2$, (with Eu$^{2+}$) reveals an anomalously large thermal expansion indicative of the lattice softening associated to valence fluctuations. A marked broad peak at temperatures around 65-75 K is observed in specific heat, susceptibility and the derivative of resistivity, as thermal energy becomes large enough to excite Eu into a divalent state, which localizes one f electron and increases scattering of conduction electrons. In addition, the intermediate valence at low temperatures manifests in a moderately renormalized electron mass, with enhanced values of the Sommerfeld coefficient in the specific heat and a Fermi-liquid-like dependence of resistivity at low temperatures. The high residual magnetic susceptibility is mainly ascribed to a Van Vleck contribution. Although the intermediate/fluctuating valence duality is to some extent represented in the interconfiguration fluctuation model commonly used to analyze data on valence-fluctuating systems, we show that this model cannot describe the different physical properties of EuIr$_2$Si$_2$ with a single set of parameters.
Yb$_2$Si$_2$Al may be a prototype for exploring different aspects of the Shastry-Sutherland lattice, formed by planes of orthogonally coupled Yb ions. Measurements of the magnetic susceptibility find incoherently fluctuating Yb$^{3+}$ moments coexisting with a weakly correlated metallic state that is confirmed by measurements of the electrical resistivity. Increasing signs of Kondo coherence are found with decreasing temperature, including an enhanced Sommerfeld coefficient and Kadowaki-Woods ratio that signal that the metallic state found at the lowest temperatures is a Fermi liquid where correlations have become significantly stronger. A pronounced peak in the electronic and magnetic specific heat indicates that the coupling of the Yb moments to the conduction electrons leads to an effective Kondo temperature that is approximately 30 K. The valence of Yb$_2$Si$_2$Al has been investigated with electron spectroscopy methods. Yb$_2$Si$_2$Al is found to be strongly intermediate valent ($v_F=2.68(2)$ at 80 K). Taken together, these experimental data are consistent with a scenario where a coherent Kondo lattice forms in Yb$_2$Si$_2$Al from an incoherently fluctuating ensemble of Yb moments with incomplete Kondo compensation, and strong intermediate valence character.
We report the synthesis and basic physical properties of single crystals of CaFe2As2, an isostructural compound to BaFe2As2 which has been recently doped to produce superconductivity. CaFe2As2 crystalizes in the ThCr2Si2 structure with lattice parameters a = 3.907(4) A and c = 11.69(2) A. Magnetic susceptibility, resistivity, and heat capacity all show a first order phase transition at T_0 171 K. The magnetic susceptibility is nearly isotropic from 2 K to 350 K. The heat capacity data gives a Sommerfeld coefficient of 8.2 +- 0.3 mJ/molK2, and does not reveal any evidence for the presence of high frequency (> 300 K) optical phonon modes. The Hall coefficient is negative below the transition indicating dominant n-type carriers.
We report a comprehensive investigation of the lattice dynamics of URu$_2$Si$_2$ as a function of temperature using Raman scattering, optical conductivity and inelastic neutron scattering measurements as well as theoretical {it ab initio} calculations. The main effects on the optical phonon modes are related to Kondo physics. The B$_{1g}$ ($Gamma_3$ symmetry) phonon mode slightly softens below $sim$100~K, in connection with the previously reported softening of the elastic constant, $C_{11}-C_{12}$, of the same symmetry, both observations suggesting a B$_{1g}$ symmetry-breaking instability in the Kondo regime. Through optical conductivity, we detect clear signatures of strong electron-phonon coupling, with temperature dependent spectral weight and Fano line shape of some phonon modes. Surprisingly, the line shapes of two phonon modes, E$_u$(1) and A$_{2u}$(2), show opposite temperature dependencies. The A$_{2u}$(2) mode loses its Fano shape below 150 K, whereas the E$_u$(1) mode acquires it below 100~K, in the Kondo cross-over regime. This may point out to momentum-dependent Kondo physics. By inelastic neutron scattering measurements, we have drawn the full dispersion of the phonon modes between 300~K and 2~K. No remarkable temperature dependence has been obtained including through the hidden order transition. {it Ab initio} calculations with the spin-orbit coupling are in good agreement with the data except for a few low energy branches with propagation in the (a,b) plane.
Kondo insulator FeSb$_2$ with large Seebeck coefficient would have potential in thermoelectric applications in cryogenic temperature range if it had not been for large thermal conductivity $kappa$. Here we studied the influence of different chemical substitutions at Fe and Sb site on thermal conductivity and thermoelectric effect in high quality single crystals. At $5%$ of Te doping at Sb site thermal conductivity is suppressed from $sim 250$ W/Km in undoped sample to about 8 W/Km. However, Cr and Co doping at Fe site suppresses thermal conductivity more slowly than Te doping, and even at 20$%$ Cr/Co doping the thermal conductivity remains $sim 30$ W/Km. The analysis of different contributions to phonon scattering indicates that the giant suppression of $kappa$ with Te is due to the enhanced point defect scattering originating from the strain field fluctuations. In contrast, Te-doping has small influence on the correlation effects and then for small Te substitution the large magnitude of the Seebeck coefficient is still preserved, leading to the enhanced thermoelectric figure of merit ($ZTsim 0.05$ at $sim 100$ K) in Fe(Sb$_{0.9}$Te$_{0.1}$)$_2$.