Do you want to publish a course? Click here

First order superconducting phase transition in CeCoIn$_5$

80   0   0.0 ( 0 )
 Added by Roman Movshovich
 Publication date 2002
  fields Physics
and research's language is English
 Authors A. Bianchi




Ask ChatGPT about the research

We investigated the magnetic field dependence of the superconducting phase transition in heavy fermion CeCoIn_5 (T_c = 2.3 K) using specific heat, magneto-caloric effect, and thermal expansion measurements. The superconducting transition becomes first order when the magnetic field is oriented along the 001 crystallographic direction with a strength greater that 4.7 T, and transition temperature below T_0 ~ 0.31 T_c. The change from second order at lower fields is reflected in strong sharpening of both specific heat and thermal expansion anomalies associated with the phase transition, a strong magnetocaloric effect, and a step-like change in the sample volume. The first order superconducting phase transition in CeCoIn_5 is caused by Pauli limiting in type-II superconductors, and was predicted theoretically in the mid 1960s. We do not see evidence for the inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state (predicted by an alternative theory also dating back to mid-60s) in CeCoIn_5 with field H || [001].



rate research

Read More

By means of the magnetocaloric effect, we examine the nature of the superconducting-normal (S-N) transition of Sr2RuO4, a most promising candidate for a spin-triplet superconductor. We provide thermodynamic evidence that the S-N transition of this oxide is of first order below approximately 0.8 K and only for magnetic field directions very close to the conducting plane, in clear contrast to the ordinary type-II superconductors exhibiting second-order S-N transitions. The entropy release across the transition at 0.2 K is 10% of the normal-state entropy. Our result urges an introduction of a new mechanism to break superconductivity by magnetic field.
129 - S. Ernst , S. Wirth , F. Steglich 2010
High--quality single crystals of the heavy fermion superconductors CeCoIn$_5$ and CeIrIn$_5$ have been studied by means of low--temperature Scanning Tunneling Microscopy. Methods were established to facilitate textit{in-situ} sample cleaving. Spectroscopy in CeCoIn$_5$ reveals a gap which persists to above $T_c$, possibly evidencing a precursor state to SC. Atomically resolved topographs show a rearrangement of the atoms at the crystal surface. This modification at the surface might influence the surface properties as detected by tunneling spectroscopy.
We investigate the specific heat of ultra-pure single crystals of Sr2RuO4, a leading candidate of a spin-triplet superconductor. We for the first time obtained specific-heat evidence of the first-order superconducting transition below 0.8 K, namely divergent-like peaks and clear hysteresis in the specific heat at the upper critical field. The first-order transition occurs for all in-plane field directions. The specific-heat features for the first-order transition are found to be highly sensitive to sample quality; in particular, the hysteresis becomes totally absent in a sample with slightly lower quality. These thermodynamic observations provide crucial bases to understand the unconventional pair-breaking effect responsible for the first-order transition.
The magnetization and magnetic torque of a high-quality single crystal of Sr$_2$RuO$_4$ have been measured down to 0.1 K under a precise control of the magnetic-field orientation. When the magnetic field is applied exactly parallel to the $ab$ plane, a sharp magnetization jump $4pidelta M$ of $(0.74 pm 0.15)$ G at the upper critical field $H_{{rm c2},{ab}} sim 15$ kOe with a field hysteresis of 100 Oe is observed at low temperatures, evidencing a first-order superconducting-normal transition. A strong magnetic torque appearing when $H$ is slightly tilted away from the $ab$ plane confirms an intrinsic anisotropy $varGamma=xi_a/xi_c$ of as large as 60 even at 100 mK, in contrast with the observed $H_{{rm c2}}$ anisotropy of $sim 20$. The present results raise fundamental issues in both the existing spin-triplet and spin-singlet scenarios, providing, in turn, crucial hints toward the resolution of the superconducting nature of Sr$_2$RuO$_4$.
We report the synthesis and physical properties of single crystals of stoichiometric BaNi2As2 that crystalizes in the ThCr2Si2 structure with lattice parameters a = 4.112(4) AA and c = 11.54(2) AA. Resistivity and heat capacity show a first order phase transition at T_0 = 130 K with a thermal hysteresis of 7 K. The Hall coefficient is weakly temperature dependent from room temperature to 2 K where it has a value of -4x10^{-10} Omega-cm/Oe. Resistivity, ac-susceptibility, and heat capacity find evidence for bulk superconductivity at T_c = 0.7 K. The Sommerfeld coefficient at T_c is 11.6 pm 0.9 mJ/molK^2. The upper critical field is anisotropic with initial slopes of dH_{c2}^{c}/dT = -0.19 T/K and dH_{c2}^{ab}/dT = -0.40 T/K, as determined by resistivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا