Do you want to publish a course? Click here

Sharp magnetization jump at the first-order superconducting transition in Sr2RuO4

124   0   0.0 ( 0 )
 Added by Shunichiro Kittaka
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetization and magnetic torque of a high-quality single crystal of Sr$_2$RuO$_4$ have been measured down to 0.1 K under a precise control of the magnetic-field orientation. When the magnetic field is applied exactly parallel to the $ab$ plane, a sharp magnetization jump $4pidelta M$ of $(0.74 pm 0.15)$ G at the upper critical field $H_{{rm c2},{ab}} sim 15$ kOe with a field hysteresis of 100 Oe is observed at low temperatures, evidencing a first-order superconducting-normal transition. A strong magnetic torque appearing when $H$ is slightly tilted away from the $ab$ plane confirms an intrinsic anisotropy $varGamma=xi_a/xi_c$ of as large as 60 even at 100 mK, in contrast with the observed $H_{{rm c2}}$ anisotropy of $sim 20$. The present results raise fundamental issues in both the existing spin-triplet and spin-singlet scenarios, providing, in turn, crucial hints toward the resolution of the superconducting nature of Sr$_2$RuO$_4$.



rate research

Read More

By means of the magnetocaloric effect, we examine the nature of the superconducting-normal (S-N) transition of Sr2RuO4, a most promising candidate for a spin-triplet superconductor. We provide thermodynamic evidence that the S-N transition of this oxide is of first order below approximately 0.8 K and only for magnetic field directions very close to the conducting plane, in clear contrast to the ordinary type-II superconductors exhibiting second-order S-N transitions. The entropy release across the transition at 0.2 K is 10% of the normal-state entropy. Our result urges an introduction of a new mechanism to break superconductivity by magnetic field.
We investigate the specific heat of ultra-pure single crystals of Sr2RuO4, a leading candidate of a spin-triplet superconductor. We for the first time obtained specific-heat evidence of the first-order superconducting transition below 0.8 K, namely divergent-like peaks and clear hysteresis in the specific heat at the upper critical field. The first-order transition occurs for all in-plane field directions. The specific-heat features for the first-order transition are found to be highly sensitive to sample quality; in particular, the hysteresis becomes totally absent in a sample with slightly lower quality. These thermodynamic observations provide crucial bases to understand the unconventional pair-breaking effect responsible for the first-order transition.
79 - A. Bianchi 2002
We investigated the magnetic field dependence of the superconducting phase transition in heavy fermion CeCoIn_5 (T_c = 2.3 K) using specific heat, magneto-caloric effect, and thermal expansion measurements. The superconducting transition becomes first order when the magnetic field is oriented along the 001 crystallographic direction with a strength greater that 4.7 T, and transition temperature below T_0 ~ 0.31 T_c. The change from second order at lower fields is reflected in strong sharpening of both specific heat and thermal expansion anomalies associated with the phase transition, a strong magnetocaloric effect, and a step-like change in the sample volume. The first order superconducting phase transition in CeCoIn_5 is caused by Pauli limiting in type-II superconductors, and was predicted theoretically in the mid 1960s. We do not see evidence for the inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state (predicted by an alternative theory also dating back to mid-60s) in CeCoIn_5 with field H || [001].
We address the issue of how triplet superconductivity emerges in an electronic system near a ferromagnetic quantum critical point (FQCP). Previous studies found that the superconducting transition is of second order, and Tc is strongly reduced near the FQCP due to pair-breaking effects from thermal spin fluctuations. In contrast, we demonstrate that near the FQCP, the system avoids pair-breaking effects by undergoing a first order transition at a much larger Tc. A second order superconducting transition emerges only at some distance from the FQCP.
We studied the specific heat and thermal conductivity of the spin-triplet superconductor Sr2RuO4 at low temperatures and under oriented magnetic fields H. We resolved a double peak structure of the superconducting transition under magnetic field for the first time, which provides thermodynamic evidence for the existence of multiple superconducting phases. We also found a clear limiting of the upper critical field Hc2 for the field direction parallel to the RuO2 plane only within 2 degrees. The limiting of Hc2 occurs in the same H-T domain of the second superconducting phase; we suggest that the two phenomena have the same physical origin.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا