Do you want to publish a course? Click here

Magnetoresistance in the SDW state of (TMTSF)2PF6 above T*~4K; Novel effect due to the Landau quantization

124   0   0.0 ( 0 )
 Added by Mario Basletic
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetoresistance in the spin-density wave (SDW) state of (TMTSF)2PF6 is known to exhibit a rich variety of the angular dependencies when a magnetic field B is rotated in the b-c*, a-b and a-c* planes. In the presence of a magnetic field the quasiparticle spectrum in the SDW with imperfect nesting is quantized. In such a case the minimum quasiparticle energy depends both on the magnetic field strength |B| and the angle theta between the field and the crystal direction a, b or c*. This approach describes rather satisfactory the magnetoresistance above T*~4K.



rate research

Read More

The presence of subphases in spin-density wave (SDW) phase of (TMTSF)2PF6 below T* ~ 4K has been suggested by several experiments but the nature of the new phase is still controversial. We have investigated the temperature dependence of the angular dependence of the magnetoresistance in the SDW phase which shows different features for temperatures above and below T*. For T > 4K the magnetoresistance can be understood in terms of the Landau quantization of the quasiparticle spectrum in a magnetic field, where the imperfect nesting plays the crucial role. We propose that below T* ~ 4K the new unconventional SDW (USDW) appears modifying dramatically the quasiparticle spectrum. Unlike conventional SDW the order parameter of USDW depends on the quasiparticle momentum. The present model describes many features of the angular dependence of magnetoresistance reasonably well. Therefore, we may conclude that the subphase in (TMTSF)2PF6 below T* ~ 4K is described as SDW plus USDW.
It is well documented that SDW in (TMTSF)2PF6 undergoes another phase transition at T*approx 4K, though the nature of the new low temperature phase is controversial. We have shown recently that the new phase is well described in terms of unconventional SDW (USDW) which modifies the quasiparticle spectrum dramatically. In this paper we show that the same model describes consistently the Hall resistivity observed in (TMTSF)2PF6.
Magnetoresistance measurements on the quasi one-dimensional organic conductor (TMTSF)_2PF_6 performed in magnetic fields B up to 16T, temperatures T down to 0.12K and under pressures P up to 14kbar have revealed new phases on its P-B-T phase diagram. We found a new boundary which subdivides the field induced spin density wave (FISDW) phase diagram into two regions. We showed that a low-temperature region of the FISDW diagram is characterized by a hysteresis behavior typical for the first order transitions, as observed in a number of studies. In contrast to the common believe, in high temperature region of the FISDW phase diagram, the hysteresis and, hence, the first order transitions were found to disappear. Nevertheless, sharp changes in the resistivity slope are observed both in the low and high temperature domains indicating that the cascade of transitions between different subphases exists over all range of the FISDW state. We also found that the temperature dependence of the resistance (at a constant B) changes sign at about the same boundary. We compare these results with recent theoretical models.
144 - Ning Kang 2010
We report the first comprehensive investigation of the organic superconductor (TMTSF)2PF6 in the vicinity of the endpoint of the spin density wave - metal phase transition where phase coexistence occurs. At low temperature, the transition of metallic domains towards superconductivity is used to reveal the various textures. In particular, we demonstrate experimentally the existence of 1D and 2D metallic domains with a cross-over from a filamentary superconductivity mostly along the c?-axis to a 2D superconductivity in the b?c-plane perpendicular to the most conducting direction. The formation of these domain walls may be related to the proposal of a soliton phase in the vicinity of the critical pressure of the (TMTSF)2PF6 phase diagram.
We investigated the transport properties of the quasi one-dimensional organic metal (TMTSF)2ReO4 above the anion-ordering metal-insulator transition (T_{AO} approx 180K). The pronounced conductivity anisotropy, a small and smoothly temperature dependent Hall effect, and a small, positive and temperature dependent magnetoresistance are analyzed within the existing Fermi-liquid and non-Fermi liquid models. We propose that the transport properties of quasi one-dimensional Bechgaard salts at high temperatures can be described within the Fermi liquid description.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا