Do you want to publish a course? Click here

The Geometry of Soft Materials: A Primer

66   0   0.0 ( 0 )
 Added by Randall D. Kamien
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an overview of the differential geometry of curves and surfaces using examples from soft matter as illustrations. The presentation requires a background only in vector calculus and is otherwise self-contained.



rate research

Read More

We study equilibrium shapes and shape transformations of a confined semiflexible chain inside a soft lipid tubule using simulations and continuum theories. The deformed tubular shapes and chain conformations depend on the relative magnitude of their bending moduli. We characterise the collapsed macromolecular shapes by computing statistical quantities that probe the polymer properties at small length scales and report a prolate to toroidal coil transition for stiff chains. Deformed tubular shapes, calculated using elastic theories, agree with simulations. In conjunction with scattering studies, our work may provide a mechanistic understanding of gene encapsulation in soft structures.
We report on experiments that probe the stability of a two-dimensional jammed granular system formed by imposing a quasistatic simple shear strain $gamma_{rm I}$ on an initially stress free packing. We subject the shear jammed system to quasistatic cyclic shear with strain amplitude $deltagamma$. We observe two distinct outcomes after thousands of shear cycles. For small $gamma_{rm I}$ or large $deltagamma$, the system reaches a stress-free, yielding state exhibiting diffusive strobed particle displacements with a diffusion coefficient proportional to $deltagamma$. For large $gamma_{rm I}$ and small $deltagamma$, the system evolves to a stable state in which both particle positions and contact forces are unchanged after each cycle and the response to small strain reversals is highly elastic. Compared to the original shear jammed state, a stable state reached after many cycles has a smaller stress anisotropy, a much higher shear stiffness, and less tendency to dilate when sheared. Remarkably, we find that stable states show a power-law relation between shear modulus and pressure with an exponent $betaapprox 0.5$, independent of $deltagamma$. Based on our measurements, we construct a phase diagram in the $(gamma_{rm I},deltagamma)$ plane showing where our shear-jammed granular materials either stabilize or yield in the long-time limit.
Soft materials with a liquid component are an emerging paradigm in materials design. The incorporation of a liquid phase, such as water, liquid metals, or complex fluids, into solid materials imparts unique properties and characteristics that emerge as a result of the dramatically different properties of the liquid and solid. Especially in recent years, this has led to the development and study of a range of novel materials with new functional responses, with applications in topics including soft electronics, soft robotics, 3D printing, wet granular systems and even in cell biology. Here we provide a review of solid-liquid composites, broadly defined as a material system with at least one, phase-separated liquid component, and discuss their morphology and fabrication approaches, their emergent mechanical properties and functional response, and the broad range of their applications.
Yield stress fluids (YSFs) display a dual nature highlighted by the existence of a yield stress such that YSFs are solid below the yield stress, whereas they flow like liquids above it. Under an applied shear rate $dotgamma$, the solid-to-liquid transition is associated with a complex spatiotemporal scenario. Still, the general phenomenology reported in the literature boils down to a simple sequence that can be divided into a short-time response characterized by the so-called stress overshoot, followed by stress relaxation towards a steady state. Such relaxation can be either long-lasting, which usually involves the growth of a shear band that can be only transient or that may persist at steady-state, or abrupt, in which case the solid-to-liquid transition resembles the failure of a brittle material, involving avalanches. Here we use a continuum model based on a spatially-resolved fluidity approach to rationalize the complete scenario associated with the shear-induced yielding of YSFs. Our model provides a scaling for the coordinates of the stress maximum as a function of $dotgamma$, which shows excellent agreement with experimental and numerical data extracted from the literature. Moreover, our approach shows that such a scaling is intimately linked to the growth dynamics of a fluidized boundary layer in the vicinity of the moving boundary. Yet, such scaling is independent of the fate of that layer, and of the long-term behavior of the YSF. Finally, when including the presence of long-range correlations, we show that our model displays a ductile to brittle transition, i.e., the stress overshoot reduces into a sharp stress drop associated with avalanches, which impacts the scaling of the stress maximum with $dotgamma$. Our work offers a unified picture of shear-induced yielding in YSFs, whose complex spatiotemporal dynamics are deeply connected to non-local effects.
The enhancement of mobility at the surface of an amorphous alloy is studied using a combination of molecular dynamic simulations and normal mode analysis of the non-uniform distribution of Debye-Waller factors. The increased mobility at the surface is found to be associated with the appearance of Arrhenius temperature dependence. We show that the transverse Debye-Waller factor exhibits a peak at the surface. Over the accessible temperature range, we find that the bulk and surface diffusion coefficients obey the same empirical relationship with the respective Debye-Waller factors. Extrapolating this relationship to lower T, we argue that the observed decrease in the constraint at the surface is sufficient to account for the experimentally observed surface enhancement of mobility.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا