Do you want to publish a course? Click here

Soft macromolecular confinement

133   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study equilibrium shapes and shape transformations of a confined semiflexible chain inside a soft lipid tubule using simulations and continuum theories. The deformed tubular shapes and chain conformations depend on the relative magnitude of their bending moduli. We characterise the collapsed macromolecular shapes by computing statistical quantities that probe the polymer properties at small length scales and report a prolate to toroidal coil transition for stiff chains. Deformed tubular shapes, calculated using elastic theories, agree with simulations. In conjunction with scattering studies, our work may provide a mechanistic understanding of gene encapsulation in soft structures.



rate research

Read More

65 - Randall D. Kamien 2002
We present an overview of the differential geometry of curves and surfaces using examples from soft matter as illustrations. The presentation requires a background only in vector calculus and is otherwise self-contained.
When systems that can undergo phase separation between two coexisting phases in the bulk are confined in thin film geometry between parallel walls, the phase behavior can be profoundly modified. These phenomena shall be described and exemplified by computer simulations of the Asakura-Oosawa model for colloid-polymer mixtures, but applications to other soft matter systems (e.g. confined polymer blends) will also be mentioned. Typically a wall will prefer one of the phases, and hence the composition of the system in the direction perpendicular to the walls will not be homogeneous. If both walls are of the same kind, this effect leads to a distortion of the phase diagram of the system in thin film geometry, in comparison with the bulk, analogous to the phenomenon of capillary condensation of simple fluids in thin capillaries. In the case of competing walls, where both walls prefer different phases of the two phases coexisting in the bulk, a state with an interface parallel to the walls gets stabilized. The transition from the disordered phase to this soft mode phase is rounded by the finite thickness of the film and not a sharp phase transition. However, a sharp transition can occur where this interface gets localized at (one of) the walls. The relation of this interface localization transition to wetting phenomena is discussed. Finally, an outlook to related phenomena is given, such as the effects of confinement in cylindrical pores on the phase behavior, and more complicated ordering phenomena (lamellar mesophases of block copolymers or nematic phases of liquid crystals under confinement).
We simulate a strongly size-disperse hard-sphere fluid confined between two parallel, hard walls. We find that confinement induces crystallization into n-layered hexagonal lattices and a novel honeycomb-shaped structure, facilitated by fractionation. The onset of freezing prevents the formation of a stable glass phase and occurs at much smaller packing fraction than in bulk. Varying the wall separation triggers solid-to-solid transitions and a systematic change of the size-distribution of crystalline particles, which we rationalize using a semi-quantitative theory. We show that the crystallization can be exploited in a wedge geometry to demix particles of different sizes.
The jamming scenario of disordered media, formulated about 10 years ago, has in recent years been advanced by analyzing model systems of granular media. This has led to various new concepts that are increasingly being explored in in a variety of systems. This chapter contains an introductory review of these recent developments and provides an outlook on their applicability to different physical systems and on future directions. The first part of the paper is devoted to an overview of the findings for model systems of frictionless spheres, focussing on the excess of low-frequency modes as the jamming point is approached. Particular attention is paid to a discussion of the cross-over frequency and length scales that govern this approach. We then discuss the effects of particle asphericity and static friction, the applicability to bubble models for wet foams in which the friction is dynamic, the dynamical arrest in colloids, and the implications for molecular glasses.
Loose granular structures stabilized against gravity by an effective cohesive force are investigated on a microscopic basis using contact dynamics. We study the influence of the granular Bond number on the density profiles and the generation process of packings, generated by ballistic deposition under gravity. The internal compaction occurs discontinuously in small avalanches and we study their size distribution. We also develop a model explaining the final density profiles based on insight about the collapse of a packing under changes of the Bond number.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا