No Arabic abstract
Yield stress fluids (YSFs) display a dual nature highlighted by the existence of a yield stress such that YSFs are solid below the yield stress, whereas they flow like liquids above it. Under an applied shear rate $dotgamma$, the solid-to-liquid transition is associated with a complex spatiotemporal scenario. Still, the general phenomenology reported in the literature boils down to a simple sequence that can be divided into a short-time response characterized by the so-called stress overshoot, followed by stress relaxation towards a steady state. Such relaxation can be either long-lasting, which usually involves the growth of a shear band that can be only transient or that may persist at steady-state, or abrupt, in which case the solid-to-liquid transition resembles the failure of a brittle material, involving avalanches. Here we use a continuum model based on a spatially-resolved fluidity approach to rationalize the complete scenario associated with the shear-induced yielding of YSFs. Our model provides a scaling for the coordinates of the stress maximum as a function of $dotgamma$, which shows excellent agreement with experimental and numerical data extracted from the literature. Moreover, our approach shows that such a scaling is intimately linked to the growth dynamics of a fluidized boundary layer in the vicinity of the moving boundary. Yet, such scaling is independent of the fate of that layer, and of the long-term behavior of the YSF. Finally, when including the presence of long-range correlations, we show that our model displays a ductile to brittle transition, i.e., the stress overshoot reduces into a sharp stress drop associated with avalanches, which impacts the scaling of the stress maximum with $dotgamma$. Our work offers a unified picture of shear-induced yielding in YSFs, whose complex spatiotemporal dynamics are deeply connected to non-local effects.
Soft glassy materials are out of thermodynamic equilibrium and show time dependent slowing down of the relaxation dynamics. Under such situation these materials follow Boltzmann superposition principle only in the effective time domain, wherein time dependent relaxation processes are scaled by a constant relaxation time. In this work we extend effective time framework to successfully demonstrate time - temperature superposition of creep and stress relaxation data of a model soft glassy system comprised of clay suspension. Such superposition is possible when average relaxation time of the material changes with time and temperature without affecting shape of the spectrum. We show that variation in relaxation time as a function of temperature facilitates prediction of long and short time rheological behavior through time - temperature superposition from the experiments carried out over experimentally accessible timescales.
We describe a high-resolution, high-bandwidth technique for determining the local viscoelasticity of soft materials such as polymer gels. Loss and storage shear moduli are determined from the power spectra of thermal fluctuations of embedded micron-sized probe particles, observed with an interferometric microscope. This provides a passive, small-amplitude measurement of rheological properties over a much broader frequency range than previously accessible to microrheology. We study both F-actin biopolymer solutions and polyacrylamide (PAAm) gels, as model semiflexible and flexible systems, respectively. We observe high-frequency omega^(3/4) scaling of the shear modulus in F-actin solutions, in contrast to omega^(1/2) scaling for PAAm.
Physical properties of out of equilibrium soft materials depend on time as well as deformation history. In this work we propose to transform this major shortcoming into gain by applying controlled deformation field to tailor the rheological properties. We take advantage of the fact that deformation field of a certain magnitude can prevent particles in an aging soft glassy material from occupying energy wells up to a certain depth, thereby populating only the deeper wells. We employ two soft glassy materials with dissimilar microstructures and demonstrate that increase in strength of deformation field while aging leads to narrowing of spectrum of relaxation times. We believe that, in principle, this philosophy can be universally applied to different kinds of glassy materials by changing nature and strength of impetus.
There is growing evidence that the flow of driven amorphous solids is not homogeneous, even if the macroscopic stress is constant across the system. Via event driven molecular dynamics simulations of a hard sphere glass, we provide the first direct evidence for a correlation between the fluctuations of the local volume-fraction and the fluctuations of the local shear rate. Higher shear rates do preferentially occur at regions of lower density and vice versa. The temporal behavior of fluctuations is governed by a characteristic time scale, which, when measured in units of strain, is independent of shear rate in the investigated range. Interestingly, the correlation volume is also roughly constant for the same range of shear rates. A possible connection between these two observations is discussed.
We study the response to shear deformations of packings of long spherocylindrical particles that interact via frictional forces with friction coefficient $mu$. The packings are produced and deformed with the help of molecular dynamics simulations combined with minimization techniques performed on a GPU. We calculate the linear shear modulus $g_infty$, which is orders of magnitude larger than the modulus $g_0$ in the corresponding frictionless system. The motion of the particles responsible for these large frictional forces is governed by and increases with the length $ell$ of the spherocylinders. One consequence of this motion is that the shear modulus $g_infty$ approaches a finite value in the limit $elltoinfty$, even though the density of the packings vanishes, $rhoproptoell^{-2}$. By way of contrast, the frictionless modulus decreases to zero, $g_0simell^{-2}$, in accordance with the behavior of density. Increasing the strain beyond a value $gamma_csim mu$, the packing undergoes a shear-thinning transition from the large frictional to the smaller frictionless modulus when contacts saturate at the Coulomb inequality and start to slide. In this regime, sliding friction contributes a yield stress $sigma_y=g_inftygamma_c$ and the stress behaves as $sigma=sigma_y+g_0gamma$. The interplay between static and sliding friction gives rise to hysteresis in oscillatory shear simulations.