Do you want to publish a course? Click here

Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier

112   0   0.0 ( 0 )
 Added by Michel Peyrard
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We address the problem of heat conduction in 1-D nonlinear chains; we show that, acting on the parameter which controls the strength of the on site potential inside a segment of the chain, we induce a transition from conducting to insulating behavior in the whole system. Quite remarkably, the same transition can be observed by increasing the temperatures of the thermal baths at both ends of the chain by the same amount. The control of heat conduction by nonlinearity opens the possibility to propose new devices such as a thermal rectifier.



rate research

Read More

Heat transport in one-dimensional (1D) momentum-conserving lattices is generally assumed to be anomalous, thus yielding a power-law divergence of thermal conductivity with system length. However, whether heat transport in two-dimensional (2D) system is anomalous or not is still on debate because of the difficulties involved in experimental measurements or due to the insufficiently large simulation size. Here, we simulate energy and momentum diffusion in the 2D nonlinear lattices using the method of fluctuation correlation functions. Our simulations confirm that energy diffusion in the 2D momentum-conserving lattices is anomalous and can be well described by the L{e}vy-stable distribution. We also find that the disappear of side peaks of heat mode may suggest a weak coupling between heat mode and sound mode in the 2D nonlinear system. It is also observed that the harmonic interactions in the 2D nonlinear lattices can accelerate the energy diffusion. Contrary to the hypothesis of 1D system, we clarify that anomalous heat transport in the 2D momentum-conserving system cannot be corroborated by the momentum superdiffusion any more. Moreover, as is expected, lattices with a nonlinear on-site potential exhibit normal energy diffusion, independent of the dimension. Our findings offer some valuable insights into the mechanism of thermal transport in 2D system.
86 - Junjie Liu , Sha Liu , Nianbei Li 2015
We propose a variational approach to study renormalized phonons in momentum conserving nonlinear lattices with either symmetric or asymmetric potentials. To investigate the influence of pressure to phonon properties, we derive an inequality which provides both the lower and upper bound of the Gibbs free energy as the associated variational principle. This inequality is a direct extension to the Gibbs-Bogoliubov inequality. Taking the symmetry effect into account, the reference system for the variational approach is chosen to be harmonic with an asymmetric quadratic potential which contains variational parameters. We demonstrate the power of this approach by applying it to one dimensional nonlinear lattices with a symmetric or asymmetric Fermi-Pasta- Ulam type potential. For a system with a symmetric potential and zero pressure, we recover existing results. For other systems which beyond the scope of existing theories, including those having the symmetric potential and pressure, and those having the asymmetric potential with or without pressure, we also obtain accurate sound velocity.
We construct a contour function for the entanglement entropies in generic harmonic lattices. In one spatial dimension, numerical analysis are performed by considering harmonic chains with either periodic or Dirichlet boundary conditions. In the massless regime and for some configurations where the subsystem is a single interval, the numerical results for the contour function are compared to the inverse of the local weight function which multiplies the energy-momentum tensor in the corresponding entanglement hamiltonian, found through conformal field theory methods, and a good agreement is observed. A numerical analysis of the contour function for the entanglement entropy is performed also in a massless harmonic chain for a subsystem made by two disjoint intervals.
104 - W. Kobayashi , Y. Teraoka , 2009
We have experimentally demonstrated thermal rectification as bulk effect. According to a theoretical design of a thermal rectifier, we have prepared an oxide thermal rectifier made of two cobalt oxides with different thermal conductivities, and have made an experimental system to detect the thermal rectification. The rectifying coefficient of the device is found to be 1.43, which is in good agreement with the numerical calculation.
93 - R. Scheibner 2007
We report the observation of thermal rectification in a semiconductor quantum dot, as inferred from the asymmetric line shape of the thermopower oscillations. The asymmetry is observed at high in-plane magnetic fields and caused by the presence of a high orbital momentum state in the dot.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا