Do you want to publish a course? Click here

A contour for the entanglement entropies in harmonic lattices

88   0   0.0 ( 0 )
 Added by Andrea Coser
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a contour function for the entanglement entropies in generic harmonic lattices. In one spatial dimension, numerical analysis are performed by considering harmonic chains with either periodic or Dirichlet boundary conditions. In the massless regime and for some configurations where the subsystem is a single interval, the numerical results for the contour function are compared to the inverse of the local weight function which multiplies the energy-momentum tensor in the corresponding entanglement hamiltonian, found through conformal field theory methods, and a good agreement is observed. A numerical analysis of the contour function for the entanglement entropy is performed also in a massless harmonic chain for a subsystem made by two disjoint intervals.



rate research

Read More

We study the logarithmic negativity and the moments of the partial transpose in the ground state of a two dimensional massless harmonic square lattice with nearest neighbour interactions for various configurations of adjacent domains. At leading order for large domains, the logarithmic negativity and the logarithm of the ratio between the generic moment of the partial transpose and the moment of the reduced density matrix at the same order satisfy an area law in terms of the length of the curve shared by the adjacent regions. We give numerical evidences that the coefficient of the area law term in these quantities is related to the coefficient of the area law term in the Renyi entropies. Whenever the curve shared by the adjacent domains contains vertices, a subleading logarithmic term occurs in these quantities and the numerical values of the corner function for some pairs of angles are obtained. In the special case of vertices corresponding to explementary angles, we provide numerical evidence that the corner function of the logarithmic negativity is given by the corner function of the Renyi entropy of order 1/2.
152 - J. I. Latorre , A. Riera 2009
We review some of the recent progress on the study of entropy of entanglement in many-body quantum systems. Emphasis is placed on the scaling properties of entropy for one-dimensional multi-partite models at quantum phase transitions and, more generally, on the concept of area law. We also briefly describe the relation between entanglement and the presence of impurities, the idea of particle entanglement, the evolution of entanglement along renormalization group trajectories, the dynamical evolution of entanglement and the fate of entanglement along a quantum computation.
61 - J. Vidal , S. Dusuel , T. Barthel 2006
We discuss the behavior of the entanglement entropy of the ground state in various collective systems. Results for general quadratic two-mode boson models are given, yielding the relation between quantum phase transitions of the system (signaled by a divergence of the entanglement entropy) and the excitation energies. Such systems naturally arise when expanding collective spin Hamiltonians at leading order via the Holstein-Primakoff mapping. In a second step, we analyze several such models (the Dicke model, the two-level BCS model, the Lieb-Mattis model and the Lipkin-Meshkov-Glick model) and investigate the properties of the entanglement entropy in the whole parameter range. We show that when the system contains gapless excitations the entanglement entropy of the ground state diverges with increasing system size. We derive and classify the scaling behaviors that can be met.
We study the time evolution of the logarithmic negativity after a global quantum quench. In a 1+1 dimensional conformal invariant field theory, we consider the negativity between two intervals which can be either adjacent or disjoint. We show that the negativity follows the quasi-particle interpretation for the spreading of entanglement. We check and generalise our findings with a systematic analysis of the negativity after a quantum quench in the harmonic chain, highlighting two peculiar lattice effects: the late birth and the sudden death of entanglement.
We study the moments of the partial transpose of the reduced density matrix of two intervals for the free massless Dirac fermion. By means of a direct calculation based on coherent state path integral, we find an analytic form for these moments in terms of the Riemann theta function. We show that the moments of arbitrary order are equal to the same quantities for the compactified boson at the self-dual point. These equalities imply the non trivial result that also the negativity of the free fermion and the self-dual boson are equal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا