No Arabic abstract
Experimental results for the susceptibility, specific heat, 4f occupation number, Hall effect and magnetoresistance for single crystals of YbAl$_{3}$ show that, in addition to the Kondo energy scale $k_{B}T_{K}$ $% sim $ 670K, there is a low temperature scale $T_{coh}<50$K for the onset of coherence. Furthermore the crossover from the low temperature Fermi liquid regime to the high temperature local moment regime is slower than predicted by the Anderson impurity model. These effects may reflect the behavior of the Anderson Lattice in the limit of low conduction electron density.
In some metals containing a sub-lattice of rare earth or actinide ions, free local $f$ spins at high temperatures dissolve into the sea of quantum conduction electrons at low temperatures, where they become mobile excitations. Once mobile, the spins acquire charge, forming electrons of heavy mass, known as heavy fermions. In turn, the incorporation of heavy charges into the conduction sea leads to an increase in the volume of the Fermi surface. This process, called Kondo scattering, is accompanied by a dramatic, temperature dependent transformation of the electronic interactions and masses. Since the Kondo phenomena is controlled by quantum fluctuations, here we ask, at which point does the Fermi surface change character? A priori, the answer is not clear, since near its onset, the Kondo effect cannot be described as a simple hybridization of electronic eigenstates. Conventional descriptions of this Kondo scattering process consider that hybridization, Fermi volume change, and $f$-electron mobility occur simultaneously. However, using angle resolved photoemission spectroscopy to measure the evolution of excitations, we find that the changes of the Fermi surface emerge at temperatures an order of magnitude higher than the opening of the hybridization gap, and two orders of magnitude higher than the onset of the coherent character of the $f$-electrons. We suggest that the large changes in Fermi volume, driven by electronic fluctuations, occur at temperatures where the various $Gamma_x to Gamma_y$ crystal field-split $f$ levels become accessible to conduction states of the corresponding symmetries. The separation of these energy scales significantly modifies the conventional description of the Kondo lattice effect, which still lacks a full theoretical description.
Recent excperiments (ARPES, Raman) suggest the presence of two distinct energy gaps in high-Tc superconductors (HTSC), exhibiting different doping dependences. Results of a variational cluster approach to the superconducting state of the two-dimensional Hubbard model are presented which show that this model qualitatively describes this gap dichotomy: One gap (antinodal) increases with less doping, a behavior long considered as reflecting the general gap behavior of the HTSC. On the other hand, the near-nodal gap does even slightly decrease with underdoping. An explanation of this unexpected behavior is given which emphasizes the crucial role of spin fluctuations in the pairing mechanism.
The intermediate valence compound YbAl3 exhibits a broad magnetic excitation with characteristic energy E1 ~ 50meV, of order of the Kondo energy (TK ~ 600-700K). In the low temperature (T < Tcoh ~ 40K) Fermi liquid state, however, a new magnetic excitation arises at E2 ~ 33meV, which lies in the hybridization gap that exists in this compound. We show, using inelastic neutron scattering on a single-crystal sample, that while the scattering at energies near E1 has the momentum (Q-) dependence expected for interband scattering across the indirect gap, the scattering near E2 is independent of Q. This suggests that it arises from a spatially-localized excitation in the hybridization gap.
The intermediate valence compound YbAl$_3$ is known to undergo a hybridization process between itinerant and localized electrons. The resulting heavy Fermi liquid remains non-magnetic and non-superconducting. A microscopic understanding of the hybridization process in YbAl$_3$ is still lacking although some characteristic temperature and energy scales have been identified. Here we report results from novel spectroscopic measurements based on quasiparticle scattering. From the conductance spectra taken over a wide temperature range, we deduce that the band renormalization and hybridization process begins around 110 K, causing the conductance enhancement with a Fano background. This temperature, a new scale found in this work, is much higher than the coherence temperature (34 K). Our observation is in agreement with the slow crossover scenario discussed recently in the literature. The indirect hybridization gap appears to open concomitantly with the emergence of a coherent Fermi liquid. Thus, we suggest its measurement as a more rigorous way to define the coherence temperature than just taking the temperature for a resistivity peak.
The theory of deconfined quantum critical points describes phase transitions at temperature T = 0 outside the standard paradigm, predicting continuous transformations between certain ordered states where conventional theory requires discontinuities. Numerous computer simulations have offered no proof of such transitions, however, instead finding deviations from expected scaling relations that were neither predicted by the DQC theory nor conform to standard scenarios. Here we show that this enigma can be resolved by introducing a critical scaling form with two divergent length scales. Simulations of a quantum magnet with antiferromagnetic and dimerized ground states confirm the form, proving a continuous transition with deconfined excitations and also explaining anomalous scaling at T > 0. Our findings revise prevailing paradigms for quantum criticality, with potentially far-reaching implications for many strongly-correlated materials.