No Arabic abstract
The theory of deconfined quantum critical points describes phase transitions at temperature T = 0 outside the standard paradigm, predicting continuous transformations between certain ordered states where conventional theory requires discontinuities. Numerous computer simulations have offered no proof of such transitions, however, instead finding deviations from expected scaling relations that were neither predicted by the DQC theory nor conform to standard scenarios. Here we show that this enigma can be resolved by introducing a critical scaling form with two divergent length scales. Simulations of a quantum magnet with antiferromagnetic and dimerized ground states confirm the form, proving a continuous transition with deconfined excitations and also explaining anomalous scaling at T > 0. Our findings revise prevailing paradigms for quantum criticality, with potentially far-reaching implications for many strongly-correlated materials.
In this chapter we discuss aspects of the quantum critical behavior that occurs at a quantum phase transition separating a topological phase from a conventionally ordered one. We concentrate on a family of quantum lattice models, namely certain deformations of the toric code model, that exhibit continuous quantum phase transitions. One such deformation leads to a Lorentz-invariant transition in the 3D Ising universality class. An alternative deformation gives rise to a so-called conformal quantum critical point where equal-time correlations become conformally invariant and can be related to those of the 2D Ising model. We study the behavior of several physical observables, such as non-local operators and entanglement entropies, that can be used to characterize these quantum phase transitions. Finally, we briefly consider the role of thermal fluctuations and related phase transitions, before closing with a short overview of field theoretical descriptions of these quantum critical points.
We show that a chain of Heisenberg spins interacting with long-range dipolar forces in a magnetic field h perpendicular to the chain exhibits a quantum critical point belonging to the two-dimensional Ising universality class. Within linear spin-wave theory the magnon dispersion for small momenta k is [Delta^2 + v_k^2 k^2]^{1/2}, where Delta^2 propto |h - h_c| and v_k^2 propto |ln k|. For fields close to h_c linear spin-wave theory breaks down and we investigate the system using density-matrix and functional renormalization group methods. The Ginzburg regime where non-Gaussian fluctuations are important is found to be rather narrow on the ordered side of the transition, and very broad on the disordered side.
The anomalous thermodynamic properties of the paradigmatic frustrated spin-1/2 triangular lattice Heisenberg antiferromagnet (TLH) has remained an open topic of research over decades, both experimentally and theoretically. Here we further the theoretical understanding based on the recently developed, powerful exponential tensor renormalization group (XTRG) method on cylinders and stripes in a quasi one-dimensional (1D) setup, as well as a tensor product operator approach directly in 2D. The observed thermal properties of the TLH are in excellent agreement with two recent experimental measurements on the virtually ideal TLH material Ba$_8$CoNb$_6$O$_{24}$. Remarkably, our numerical simulations reveal two crossover temperature scales, at $T_l/J sim 0.20$ and $T_h/Jsim 0.55$, with $J$ the Heisenberg exchange coupling, which are also confirmed by a more careful inspection of the experimental data. We propose that in the intermediate regime between the low-temperature scale $T_l$ and the higher one $T_h$, the gapped roton-like excitations are activated with a strong chiral component and a large contribution to thermal entropies, which suppress the incipient 120$^circ$ order that emerges for temperatures below $T_l$.
We establish a scenario where fluctuations of new degrees of freedom at a quantum phase transition change the nature of a transition beyond the standard Landau-Ginzburg paradigm. To this end we study the quantum phase transition of gapless Dirac fermions coupled to a $mathbb{Z}_3$ symmetric order parameter within a Gross-Neveu-Yukawa model in 2+1 dimensions, appropriate for the Kekule transition in honeycomb lattice materials. For this model the standard Landau-Ginzburg approach suggests a first order transition due to the symmetry-allowed cubic terms in the action. At zero temperature, however, quantum fluctuations of the massless Dirac fermions have to be included. We show that they reduce the putative first-order character of the transition and can even render it continuous, depending on the number of Dirac fermions $N_f$. A non-perturbative functional renormalization group approach is employed to investigate the phase transition for a wide range of fermion numbers. For the first time we obtain the critical $N_f$, where the nature of the transition changes. Furthermore, it is shown that for large $N_f$ the change from the first to second order of the transition as a function of dimension occurs exactly in the physical 2+1 dimensions. We compute the critical exponents and predict sizable corrections to scaling for $N_f =2$.
This review summarizes recent developments in the study of fermionic quantum criticality, focusing on new progress in numerical methodologies, especially quantum Monte Carlo methods, and insights that emerged from recently large-scale numerical simulations. Quantum critical phenomena in fermionic systems have attracted decades of extensive research efforts, partially lured by their exotic properties and potential technology applications and partially awaked by the profound and universal fundamental principles that govern these quantum critical systems. Due to the complex and non-perturbative nature, these systems belong to the most difficult and challenging problems in the study of modern condensed matter physics, and many important fundamental problems remain open. Recently, new developments in model design and algorithm improvements enabled unbiased large-scale numerical solutions to be achieved in the close vicinity of these quantum critical points, which paves a new pathway towards achieving controlled conclusions through combined efforts of theoretical and numerical studies, as well as possible theoretical guidance for experiments in heavy-fermion compounds, Cu-based and Fe-based superconductors, ultra-cold fermionic atomic gas, twisted graphene layers, etc., where signatures of fermionic quantum criticality exist.