Do you want to publish a course? Click here

Magnetic Collective Mode Dispersion in High Temperature Superconductors

134   0   0.0 ( 0 )
 Added by Mike Norman
 Publication date 2000
  fields Physics
and research's language is English
 Authors M. R. Norman




Ask ChatGPT about the research

Recent neutron scattering experiments in the superconducting state of YBCO have been interpreted in terms of a magnetic collective mode whose dispersion relative to the commensurate wavevector has a curvature opposite in sign to a conventional magnon dispersion. The purpose of this article is to demonstrate that simple linear response calculations are in support of a collective mode interpretation, and to explain why the dispersion has the curvature it does.



rate research

Read More

The t-t-t-J model of electrons interacting with three phonon modes (breathing, apical breathing, and buckling) is considered. The wave-vector dependence of the matrix elements of the electron-phonon interaction leads to opposite contributions to the pairing potential with the d-symmetry: the buckling mode facilitates electron pairing, while the breathing mode suppresses it. As a result, the critical temperature of La{2 - x}Sr{x}CuO{4} that is associated with the magnetic mechanism is lowered when phonons are taken into account.
A magnetic field relaxation at the center of a pulse-magnetized single-domain Y-Ba-Cu-O superconductor at 78K has been studied. In case of a weak magnetization, the magnetic flux density increases logarithmically and normalized relaxation rate defined as S=-d(lnB)/d(lnt) is negative (S=-0.037). When an external magnetic field magnitude increases, the relaxation rate first decreases in absolute value, then changes sign (becomes positive, S>0) and after reaching some maximum finally reduces to a very small value. Non-monotonous dependence of S vs Ha is explained by a non-homogeneous local temperature distribution during a pulse magnetization.
122 - Norman Mannella 2014
The determination of the most appropriate starting point for the theoretical description of Fe-based materials hosting high temperature superconductivity remains among the most important unsolved problem in this relatively new field. Most of the work to date has focused on the pnictides, with LaFeAsO, BaFe2As2 and LiFeAs being representative parent compounds of three families known as 1111, 122 and 111, respectively. This Topic Review examines recent progress in this area, with particular emphasis on the implication of experimental data which have provided evidence for the presence of electron itinerancy and the detection of local spin moments. In light of the results presented, the necessity of a theoretical framework contemplating the presence and the interplay between itinerant electrons and large spin moments is discussed. It is argued that the physics at the heart of the macroscopic properties of pnictides Fe-based high temperature superconductors appears to be far more complex and interesting than initially predicted.
Photoemission spectra of Bi2Sr2CaCu2O8 reveal that the high energy feature near (pi,0), the hump, scales with the superconducting gap and persists above Tc in the pseudogap phase. As the doping decreases, the dispersion of the hump increasingly reflects the wavevector (pi,pi) characteristic of the undoped insulator, despite the presence of a large Fermi surface. This can be understood from the interaction of the electrons with a collective mode, supported by our observation that the doping dependence of the resonance observed by neutron scattering is the same as that inferred from our data.
71 - T. Valla , T. E. Kidd , Z.-H. Pan 2006
In conventional metals, electron-phonon coupling, or the phonon-mediated interaction between electrons, has long been known to be the pairing interaction responsible for the superconductivity. The strength of this interaction essentially determines the superconducting transition temperature TC. One manifestation of electron-phonon coupling is a mass renormalization of the electronic dispersion at the energy scale associated with the phonons. This renormalization is directly observable in photoemission experiments. In contrast, there remains little consensus on the pairing mechanism in cuprate high temperature superconductors. The recent observation of similar renormalization effects in cuprates has raised the hope that the mechanism of high temperature superconductivity may finally be resolved. The focus has been on the low energy renormalization and associated kink in the dispersion at around 50 meV. However at that energy scale, there are multiple candidates including phonon branches, structure in the spin-fluctuation spectrum, and the superconducting gap itself, making the unique identification of the excitation responsible for the kink difficult. Here we show that the low-energy renormalization at ~50 meV is only a small component of the total renormalization, the majority of which occurs at an order of magnitude higher energy (~350 meV). This high energy kink poses a new challenge for the physics of the cuprates. Its role in superconductivity and relation to the low-energy kink remains to be determined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا