Do you want to publish a course? Click here

Magnetic relaxation in pulse-magnetized high-temperature superconductors

245   0   0.0 ( 0 )
 Added by Eugenij Krasnoperov
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A magnetic field relaxation at the center of a pulse-magnetized single-domain Y-Ba-Cu-O superconductor at 78K has been studied. In case of a weak magnetization, the magnetic flux density increases logarithmically and normalized relaxation rate defined as S=-d(lnB)/d(lnt) is negative (S=-0.037). When an external magnetic field magnitude increases, the relaxation rate first decreases in absolute value, then changes sign (becomes positive, S>0) and after reaching some maximum finally reduces to a very small value. Non-monotonous dependence of S vs Ha is explained by a non-homogeneous local temperature distribution during a pulse magnetization.



rate research

Read More

122 - Norman Mannella 2014
The determination of the most appropriate starting point for the theoretical description of Fe-based materials hosting high temperature superconductivity remains among the most important unsolved problem in this relatively new field. Most of the work to date has focused on the pnictides, with LaFeAsO, BaFe2As2 and LiFeAs being representative parent compounds of three families known as 1111, 122 and 111, respectively. This Topic Review examines recent progress in this area, with particular emphasis on the implication of experimental data which have provided evidence for the presence of electron itinerancy and the detection of local spin moments. In light of the results presented, the necessity of a theoretical framework contemplating the presence and the interplay between itinerant electrons and large spin moments is discussed. It is argued that the physics at the heart of the macroscopic properties of pnictides Fe-based high temperature superconductors appears to be far more complex and interesting than initially predicted.
Muon spin relaxation ($mu$SR) measurements in high transverse magnetic fields ($parallel hat c$) revealed strong field-induced quasi-static magnetism in the underdoped and Eu doped (La,Sr)$_{2}$CuO$_{4}$ and La$_{1.875}$Ba$_{0.125}$CuO$_{4}$, existing well above $T_{c}$ and $T_{N}$. The susceptibility-counterpart of Cu spin polarization, derived from the muon spin relaxation rate, exhibits a divergent behavior towards $T sim 25$ K. No field-induced magnetism was detected in overdoped La$_{1.81}$Sr$_{0.19}$CuO$_{4}$, optimally doped Bi2212, and Zn-doped YBa$_{2}$Cu$_{3}$O$_{7}$.
A direct and element-specific measurement of the local Fe spin moment has been provided by analyzing the Fe 3s core level photoemission spectra in the parent and optimally doped CeFeAsO1-xFx (x = 0, 0.11) and Sr(Fe1 xCox)2As2 (x = 0, 0.10) pnictides. The rapid time scales of the photoemission process allowed the detection of large local spin moments fluctuating on a 10-15 s time scale in the paramagnetic, anti-ferromagnetic and superconducting phases, indicative of the occurrence of ubiquitous strong Hunds magnetic correlations. The magnitude of the spin moment is found to vary significantly among different families, 1.3 muB in CeFeAsO and 2.1 muB in SrFe2As2. Surprisingly, the spin moment is found to decrease considerably in the optimally doped samples, 0.9 muB in CeFeAsO0.89F0.11 and 1.3 muB in Sr(Fe0.9Co0.1)2As2. The strong variation of the spin moment against doping and material type indicates that the spin moments and the motion of itinerant electrons are influenced reciprocally in a self-consistent fashion, reflecting the strong competition between the antiferromagnetic super-exchange interaction among the spin moments and the kinetic energy gain of the itinerant electrons in the presence of a strong Hunds coupling. By describing the evolution of the magnetic correlations concomitant with the appearance of superconductivity, these results constitute a fundamental step toward attaining a correct description of the microscopic mechanisms shaping the electronic properties in the pnictides, including magnetism and high temperature superconductivity.
276 - R. A. Klemm , C. T. Rieck , 1998
The symmetry operations of the crystal groups relevant for the high temperature superconductors HgBa2CuO4+x (Hg1201), YBa2Cu3O7-x (YBCO), and Bi2Sr2CaCu2O8+x (BSCCO) are elucidated. The allowable combinations of the superconducting order parameter (OP) components are presented for both the angular momentum and lattice representations. For tetragonal Hg1201, the spin singlet OP components are composed from four sets of compatible basis functions, which combine to give the generalized s-, dx2-y2-, dxy-, and gxy(x2-y2)- wave OPs. In YBCO, elements of s- and dx2-y2- wave sets are compatible, but in BSCCO, elements of s- and dxy- wave sets are compatible. The Josephson critical current density JcJ across c-axis twist junctions in the vicinity of Tc is then evaluated as a function of the twist angle phi0, for each allowable OP combination, for both coherent and incoherent tunneling. Recent experiments of Li et al. demonstrated the independence of JcJ(phi0)/JcS upon phi0 at and below Tc, where JcS is the critical current density of a constituent single crystal. These experiments are shown to be consistent with an OP containing an s-wave component, but inconsistent with an OP containing the purported dx2-y2-wave component. In addition, they demonstrate that the interlayer tunneling across untwisted layers in single crystal BSCCO is entirely incoherent. We propose a new type of tricrystal experiment using single crystal c-axis twist junctions, that does not employ substrate grain boundaries.
The t-t-t-J model of electrons interacting with three phonon modes (breathing, apical breathing, and buckling) is considered. The wave-vector dependence of the matrix elements of the electron-phonon interaction leads to opposite contributions to the pairing potential with the d-symmetry: the buckling mode facilitates electron pairing, while the breathing mode suppresses it. As a result, the critical temperature of La{2 - x}Sr{x}CuO{4} that is associated with the magnetic mechanism is lowered when phonons are taken into account.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا