No Arabic abstract
In the so-called microscopic models of vehicular traffic, attention is paid explicitly to each individual vehicle each of which is represented by a particle; the nature of the interactions among these particles is determined by the way the vehicles influence each others movement. Therefore, vehicular traffic, modeled as a system of interacting particles driven far from equilibrium, offers the possibility to study various fundamental aspects of truly nonequilibrium systems which are of current interest in statistical physics. Analytical as well as numerical techniques of statistical physics are being used to study these models to understand rich variety of physical phenomena exhibited by vehicular traffic. Some of these phenomena, observed in vehicular traffic under different circumstances, include transitions from one dynamical phase to another, criticality and self-organized criticality, metastability and hysteresis, phase-segregation, etc. In this critical review, written from the perspective of statistical physics, we explain the guiding principles behind all the main theoretical approaches. But we present detailed discussions on the results obtained mainly from the so-called particle-hopping models, particularly emphasizing those which have been formulated in recent years using the language of cellular automata.
In recent years statistical physicists have developed {it discrete} particle-hopping models of vehicular traffic, usually formulated in terms of {it cellular automata}, which are similar to the microscopic models of interacting charged particles in the presence of an external electric field. Concepts and techniques of non-equilibrium statistical mechanics are being used to understand the nature of the steady states and fluctuations in these so-called microscopic models. In this brief review we explain, primarily to the nonexperts, these models and the physical implications of the results.
Many questions of fundamental interest in todays science can be formulated as inference problems: Some partial, or noisy, observations are performed over a set of variables and the goal is to recover, or infer, the values of the variables based on the indirect information contained in the measurements. For such problems, the central scientific questions are: Under what conditions is the information contained in the measurements sufficient for a satisfactory inference to be possible? What are the most efficient algorithms for this task? A growing body of work has shown that often we can understand and locate these fundamental barriers by thinking of them as phase transitions in the sense of statistical physics. Moreover, it turned out that we can use the gained physical insight to develop new promising algorithms. Connection between inference and statistical physics is currently witnessing an impressive renaissance and we review here the current state-of-the-art, with a pedagogical focus on the Ising model which formulated as an inference problem we call the planted spin glass. In terms of applications we review two classes of problems: (i) inference of clusters on graphs and networks, with community detection as a special case and (ii) estimating a signal from its noisy linear measurements, with compressed sensing as a case of sparse estimation. Our goal is to provide a pedagogical review for researchers in physics and other fields interested in this fascinating topic.
We propose a model to implement and simulate different traffic-flow conditions in terms of quantum graphs hosting an ($N$+1)-level dot at each site, which allows us to keep track of the type and of the destination of each vehicle. By implementing proper Lindbladian local dissipators, we derive the master equations that describe the traffic flow in our system. To show the versatility and the reliability of our technique, we employ it to model different types of traffic flow (the symmetric three-way roundabout and the three-road intersection). Eventually, we successfully compare our predictions with results from classical models.
Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the NP-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this thesis is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named locked constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability.
In statistical physics, the challenging combinatorial enumeration of the configurations of a system subject to hard constraints (microcanonical ensemble) is mapped to a mathematically easier calculation where the constraints are softened (canonical ensemble). However, the mapping is exact only when the size of the system is infinite and if the property of ensemble equivalence (EE), i.e. the asymptotic identity of canonical and microcanonical large deviations, holds. For finite systems, or when EE breaks down, statistical physics is currently believed to provide no answer to the combinatorial problem. In contrast with this expectation, here we establish exact relationships connecting conjugate ensembles in full generality, even for finite system size and when EE does not hold. We also show that in the thermodynamic limit the ensembles are directly related through the matrix of canonical (co)variances of the constraints, plus a correction term that survives only if this matrix has an infinite number of finite eigenvalues. These new relationships restore the possibility of enumerating microcanonical configurations via canonical probabilities, thus reconnecting statistical physics and combinatorics in realms where they were believed to be no longer in mutual correspondence.