No Arabic abstract
We propose a model to implement and simulate different traffic-flow conditions in terms of quantum graphs hosting an ($N$+1)-level dot at each site, which allows us to keep track of the type and of the destination of each vehicle. By implementing proper Lindbladian local dissipators, we derive the master equations that describe the traffic flow in our system. To show the versatility and the reliability of our technique, we employ it to model different types of traffic flow (the symmetric three-way roundabout and the three-road intersection). Eventually, we successfully compare our predictions with results from classical models.
We study the derivation of macroscopic traffic models from car-following vehicle dynamics by means of hydrodynamic limits of an Enskog-type kinetic description. We consider the superposition of Follow-the-Leader (FTL) interactions and relaxation towards a traffic-dependent Optimal Velocity (OV) and we show that the resulting macroscopic models depend on the relative frequency between these two microscopic processes. If FTL interactions dominate then one gets an inhomogeneous Aw-Rascle-Zhang model, whose (pseudo) pressure and stability of the uniform flow are precisely defined by some features of the microscopic FTL and OV dynamics. Conversely, if the rate of OV relaxation is comparable to that of FTL interactions then one gets a Lighthill-Whitham-Richards model ruled only by the OV function. We further confirm these findings by means of numerical simulations of the particle system and the macroscopic models. Unlike other formally analogous results, our approach builds the macroscopic models as physical limits of particle dynamics rather than assessing the convergence of microscopic to macroscopic solutions under suitable numerical discretisations.
The dynamics of pedestrian crowds has been studied intensively in recent years, both theoretically and empirically. However, in many situations pedestrian crowds are rather static, e.g. due to jamming near bottlenecks or queueing at ticket counters or supermarket checkouts. Classically such queues are often described by the M/M/1 queue that neglects the internal structure (density profile) of the queue by focussing on the system length as the only dynamical variable. This is different in the Exclusive Queueing Process (EQP) in which the queue is considered on a microscopic level. It is equivalent to a Totally Asymmetric Exclusion Process (TASEP) of varying length. The EQP has a surprisingly rich phase diagram with respect to the arrival probability alpha and the service probability beta. The behavior on the phase transition line is much more complex than for the TASEP with a fixed system length. It is nonuniversal and depends strongly on the update procedure used. In this article, we review the main properties of the EQP. We also mention extensions and applications of the EQP and some related models.
In the so-called microscopic models of vehicular traffic, attention is paid explicitly to each individual vehicle each of which is represented by a particle; the nature of the interactions among these particles is determined by the way the vehicles influence each others movement. Therefore, vehicular traffic, modeled as a system of interacting particles driven far from equilibrium, offers the possibility to study various fundamental aspects of truly nonequilibrium systems which are of current interest in statistical physics. Analytical as well as numerical techniques of statistical physics are being used to study these models to understand rich variety of physical phenomena exhibited by vehicular traffic. Some of these phenomena, observed in vehicular traffic under different circumstances, include transitions from one dynamical phase to another, criticality and self-organized criticality, metastability and hysteresis, phase-segregation, etc. In this critical review, written from the perspective of statistical physics, we explain the guiding principles behind all the main theoretical approaches. But we present detailed discussions on the results obtained mainly from the so-called particle-hopping models, particularly emphasizing those which have been formulated in recent years using the language of cellular automata.
A two-lane extension of a recently proposed cellular automaton model for traffic flow is discussed. The analysis focuses on the reproduction of the lane usage inversion and the density dependence of the number of lane changes. It is shown that the single-lane dynamics can be extended to the two-lane case without changing the basic properties of the model which are known to be in good agreement with empirical single-vehicle data. Therefore it is possible to reproduce various empirically observed two-lane phenomena, like the synchronization of the lanes, without fine-tuning of the model parameters.
We present results on the modeling of on- and off-ramps in cellular automata for traffic flow, especially the Nagel-Schreckenberg model. We study two different types of on-ramps that cause qualitatively the same effects. In a certain density regime one observes plateau formation in the fundamental diagram. The plateau value depends on the input-rate of cars at the on-ramp. The on-ramp acts as a local perturbation that separates the system into two regimes: A regime of free flow and another one where only jammed states exist. This phase separation is the reason for the plateau formation and implies a behaviour analogous to that of stationary defects. This analogy allows to perform very fast simulations of complex traffic networks with a large number of on- and off-ramps because one can parametrise on-ramps in an exceedingly easy way.