Do you want to publish a course? Click here

Magnetotransport study of the charged stripes in high-T_c cuprates

145   0   0.0 ( 0 )
 Added by Yoichi Ando
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the in-plane and out-of-plane magnetoresistance (MR) in heavily-underdoped, antiferromagnetic YBa_{2}Cu_{3}O_{6+x}, which reveals a variety of striking features. The in-plane MR demonstrates a d-wave-like anisotropy upon rotating the magnetic field H within the ab plane. With decreasing temperature below 20-25 K, the system acquires memory: exposing a crystal to the magnetic field results in a persistent in-plane resistivity anisotropy. The overall features can be explained by assuming that the CuO_2 planes contain a developed array of stripes accommodating the doped holes, and that the MR is associated with the field-induced topological ordering of the stripes.



rate research

Read More

93 - J.G. Storey 2017
Cuprate superconductors have long been known to exhibit an energy gap that persists high above the superconducting transition temperature ($T_c$). Debate has continued now for decades as to whether it is a precursor superconducting gap or a pseudogap arising from some competing correlation. Failure to resolve this has arguably delayed explaining the origins of superconductivity in these highly complex materials. Here we effectively settle the question by calculating a variety of thermodynamic and spectroscopic properties, exploring the effect of a temperature-dependent pair-breaking term in the self-energy in the presence of pairing interactions that persist well above $T_c$. We start by fitting the detailed temperature-dependence of the electronic specific heat and immediately can explain its hitherto puzzling field dependence. Taking this same combination of pairing temperature and pair-breaking scattering we are then able to simultaneously describe in detail the unusual temperature and field dependence of the superfluid density, tunneling, Raman and optical spectra, which otherwise defy explanation in terms a superconducting gap that closes conventionally at $T_c$. These findings demonstrate that the gap above $T_c$ in the overdoped regime likely originates from incoherent superconducting correlations, and is distinct from the competing-order pseudogap that appears at lower doping.
We report that planar CuO_2 hole densities in high-T_c cuprates are consistently determined by the Cu-NMR Knight shift. In single- and bi-layered cuprates, it is demonstrated that the spin part of the Knight shift K_s(300 K) at room temperature monotonically increases with the hole density $p$ from underdoped to overdoped regions, suggesting that the relationship of K_s(300 K) vs. p is a reliable measure to determine p. The validity of this K_s(300 K)-p relationship is confirmed by the investigation of the p-dependencies of hyperfine magnetic fields and of spin susceptibility for single- and bi-layered cuprates with tetragonal symmetry. Moreover, the analyses are compared with the NMR data on three-layered Ba_2Ca_2Cu_3O_6(F,O)_2, HgBa_2Ca_2Cu_3O_{8+delta}, and five-layered HgBa_2Ca_4Cu_5O_{12+delta}, which suggests the general applicability of the K_s(300 K)-p relationship to multilayered compounds with more than three CuO_2 planes. We remark that the measurement of K_s(300 K) enables us to separately estimate p for each CuO_2 plane in multilayered compounds, where doped hole carriers are inequivalent between outer CuO_2 planes and inner CuO_2 planes.
122 - N. E. Hussey 2008
In this article, I review progress towards an understanding of the normal state (in-plane) transport properties of high-$T_c$ cuprates in the light of recent developments in both spectroscopic and transport measurement techniques. Against a backdrop of mounting evidence for anisotropic single-particle lifetimes in cuprate superconductors, new results have emerged that advocate similar momentum dependence in the transport decay rate $Gamma$({bf k}). In addition, enhancement of the energy scale (up to the bare bandwidth) over which spectroscopic information on the quasiparticle response can be obtained has led to the discovery of new, unforeseen features that surprisingly, may have a significant bearing on the transport properties at the dc limit. With these two key developments in mind, I consider here whether all the ingredients necessary for a complete phenomenological description of the anomalous normal state transport properties of high-$T_c$ cuprates are now in place.
A possibility of holon (boson) pair condensation is explored for hole doped high T_c cuprates, by using the U(1) slave-boson representation of the t-J Hamiltonian with the inclusion of hole-hole repulsion. A phase diagram of the hole doped high T_c cuprates is deduced by allowing both the holon pairing and spinon pairing. It is shown that the spin gap size remains nearly unchanged below the holon pair condensation temperature. We find that the s-wave holon pairing under the condition of d-wave singlet pairing is preferred, thus allowing d-wave hole pairing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا