No Arabic abstract
In this article, I review progress towards an understanding of the normal state (in-plane) transport properties of high-$T_c$ cuprates in the light of recent developments in both spectroscopic and transport measurement techniques. Against a backdrop of mounting evidence for anisotropic single-particle lifetimes in cuprate superconductors, new results have emerged that advocate similar momentum dependence in the transport decay rate $Gamma$({bf k}). In addition, enhancement of the energy scale (up to the bare bandwidth) over which spectroscopic information on the quasiparticle response can be obtained has led to the discovery of new, unforeseen features that surprisingly, may have a significant bearing on the transport properties at the dc limit. With these two key developments in mind, I consider here whether all the ingredients necessary for a complete phenomenological description of the anomalous normal state transport properties of high-$T_c$ cuprates are now in place.
We have studied the influence of disorder induced by electron irradiation on the Nernst effect in optimally and underdoped YBa2Cu3O(7-d) single crystals. The fluctuation regime above T_{c} expands significantly with disorder, indicating that the T_{c} decrease is partly due to the induced loss of phase coherence. In pure crystals the temperature extension of the Nernst signal is found to be narrow whatever the hole doping, contrary to data reported in the low-T_{c} cuprates families. Our results show that the presence of intrinsic disorder can explain the enhanced range of Nernst signal found in the pseudogap phase of the latter compounds.
Starting from a recently proposed comprehensive theory for the high-Tc superconductivity in cuprates, we derive a general analytic expression for the planar resistivity, in the presence of an applied external magnetic field $textbf{H}$ and explore its consequences in the different phases of these materials. As an initial probe of our result, we show it compares very well with experimental data for the resistivity of LSCO at different values of the applied field. We also apply our result to Bi2201 and show that the magnetoresistivity in the strange metal phase of this material, exhibits the $H^2$ to $H$ crossover, as we move from the weak to the strong field regime. Yet, despite of that, the magnetoresistivity does not present a quadrature scaling. Remarkably, the resistivity H-field derivative does scale as a function of $frac{H}{T}$, in complete agreement with recent magneto-transport measurements made in the strange metal phase of cuprates cite{Hussey2020}. We, finally, address the issue of the $T$-power-law dependence of the resistivity of overdoped cuprates and compare our results with experimental data for Tl2201. We show that this provides a simple method to determine whether the quantum critical point associated to the pseudogap temperature $T^*(x)$ belongs to the SC dome or not.
The penetration depth is calculated over the entire doping range of the cuprate phase diagram with emphasis on the underdoped regime. Pseudogap formation on approaching the Mott transition, for doping below a quantum critical point, is described within a model based on the resonating valence bond spin liquid which provides an ansatz for the coherent piece of the Greens function. Fermi surface reconstruction, which is an essential element of the model, has a strong effect on the superfluid density at T=0 producing a sharp drop in magnitude, but does not change the slope of the linear low temperature variation. Comparison with recent data on Bi-based cuprates provides validation of the theory and shows that the effects of correlations, captured by Gutzwiller factors, are essential for a qualitative understanding of the data. We find that the Ferrell-Glover-Tinkham sum rule still holds and we compare our results with those for the Fermi arc and the nodal liquid models.
Combining (1) the universal correlations between $T_{c}$ and $n_{s}/m^{*}$ (superconducting carrier density / effective mass) and (2) the pseudo-gap behavior in the underdoped region, we obtain a picture to describe superconductivity in cuprate systems in evolution from Bose-Einstein to BCS condensation. Overdoped and Zn-substituted cuprate systems show signatures of reduced superfluid density in a microscopic phase separation. Scaling of $T_{c}$ to the superfluid volume density $n_{s}$ in all these cases indicate importance of Bose condensation.
The origin of the weakly insulatinglike behavior revealed when magnetic fields ($H$) suppress superconductivity in underdoped cuprates has been a longtime mystery. Surprisingly, similar behavior observed recently in La-214 cuprates with striped spin and charge orders is consistent with a metallic, as opposed to insulating, high-field normal state. Here we report a striking finding of the vanishing of the Hall coefficient ($R_mathrm{H}$) in this field-revealed normal state for all $T<(2-6)T_{c}^{0}$, where $T_{c}^{0}$ is the zero-field superconducting transition temperature. In standard models, $R_mathrm{H}$ can only vanish accidentally, and thus $R_mathrm{H}=0$ observed over a wide range of $T$ and $H$ has to imply that charge conjugation (i.e. particle-hole) symmetry is dynamically generated. This is a robust, new fundamental property of the normal state of cuprates with intertwined orders.