Do you want to publish a course? Click here

Chaotic Scattering on Graphs

55   0   0.0 ( 0 )
 Added by Tsampikos Kottos
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantized, compact graphs were shown to be excellent paradigms for quantum chaos in bounded systems. Connecting them with leads to infinity we show that they display all the features which characterize scattering systems with an underlying classical chaotic dynamics. We derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. A statistical analysis of the cross sections and resonance parameters compares well with the predictions of Random Matrix Theory. Hence, this system is proposed as a convenient tool to study the generic behavior of chaotic scattering systems, and their semiclassical description.



rate research

Read More

Motivated by the desire to understand chaos in the $S$-matrix of string theory, we study tree level scattering amplitudes involving highly excited strings. While the amplitudes for scattering of light strings have been a hallmark of string theory since its early days, scattering of excited strings has been far less studied. Recent results on black hole chaos, combined with the correspondence principle between black holes and strings, suggest that the amplitudes have a rich structure. We review the procedure by which an excited string is formed by repeatedly scattering photons off of an initial tachyon (the DDF formalism). We compute the scattering amplitude of one arbitrary excited string and any number of tachyons in bosonic string theory. At high energies and high mass excited state these amplitudes are determined by a saddle-point in the integration over the positions of the string vertex operators on the sphere (or the upper half plane), thus yielding a generalization of the scattering equations. We find a compact expression for the amplitude of an excited string decaying into two tachyons, and study its properties for a generic excited string. We find the amplitude is highly erratic as a function of both the precise excited string state and of the tachyon scattering angle relative to its polarization, a sign of chaos.
This article treats chaotic scattering with three degrees of freedom, where one of them is open and the other two are closed, as a first step toward a more general understanding of chaotic scattering in higher dimensions. Despite of the strong restrictions it breaks the essential simplicity implicit in any two-dimensional time-independent scattering problem. Introducing the third degree of freedom by breaking a continuous symmetry, we first explore the topological structure of the homoclinic/heteroclinic tangle and the structures in the scattering functions. Then we work out implications of these structures for the doubly differential cross section. The most prominent structures in the cross section are rainbow singularities. They form a fractal pattern which reflects the fractal structure of the chaotic invariant set. This allows to determine structures in the cross section from the invariant set and conversely, to obtain information about the topology of the invariant set from the cross section. The latter is a contribution to the inverse scattering problem for chaotic systems.
We propose an entropy measure for the analysis of chaotic attractors through recurrence networks which are un-weighted and un-directed complex networks constructed from time series of dynamical systems using specific criteria. We show that the proposed measure converges to a constant value with increase in the number of data points on the attractor (or the number of nodes on the network) and the embedding dimension used for the construction of the network, and clearly distinguishes between the recurrence network from chaotic time series and white noise. Since the measure is characteristic to the network topology, it can be used to quantify the information loss associated with the structural change of a chaotic attractor in terms of the difference in the link density of the corresponding recurrence networks. We also indicate some practical applications of the proposed measure in the recurrence analysis of chaotic attractors as well as the relevance of the proposed measure in the context of the general theory of complex networks.
By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.
We predict synchronization of the chaotic dynamics of two atomic ensembles coupled to a heavily damped optical cavity mode. The atoms are dissipated collectively through this mode and pumped incoherently to achieve a macroscopic population of the cavity photons. Even though the dynamics of each ensemble are chaotic, their motions repeat one another. In our system, chaos first emerges via quasiperiodicity and then synchronizes. We identify the signatures of synchronized chaos, chaos, and quasiperiodicity in the experimentally observable power spectra of the light emitted by the cavity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا