Do you want to publish a course? Click here

LASCO Measurements of the Energetics of Coronal Mass Ejections

95   0   0.0 ( 0 )
 Added by Prasad Subramanian
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the energetics of Coronal Mass Ejections (CMEs) with data from the LASCO coronagraphs on SOHO. The LASCO observations provide fairly direct measurements of the mass, velocity and dimensions of CMEs. Using these basic measurements, we determine the potential and kinetic energies and their evolution for several CMEs that exhibit a flux-rope morphology. Assuming flux conservation, we use observations of the magnetic flux in a variety of magnetic clouds near the Earth to determine the magnetic flux and magnetic energy in CMEs near the Sun. We find that the potential and kinetic energies increase at the expense of the magnetic energy as the CME moves out, keeping the total energy roughly constant. This demonstrates that flux rope CMEs are magnetically driven. Furthermore, since their total energy is constant, the flux rope parts of the CMEs can be considered to be a closed system above $sim$ 2 $R_{sun}$.



rate research

Read More

Aims: We investigate whether solar coronal mass ejections are driven mainly by coupling to the ambient solar wind or through the release of internal magnetic energy. Methods: We examine the energetics of 39 flux-rope like coronal mass ejections (CMEs) from the Sun using data in the distance range $sim$ 2--20 $R_{odot}$ from the Large Angle Spectroscopic Coronograph (LASCO) aboard the Solar and Heliospheric Observatory (SOHO). This comprises a complete sample of the best examples of flux-rope CMEs observed by LASCO in 1996-2001. Results: We find that 69% of the CMEs in our sample experience a clearly identifiable driving power in the LASCO field of view. For the CMEs that are driven, we examine if they might be deriving most of their driving power by coupling to the solar wind. We do not find conclusive evidence in favor of this hypothesis. On the other hand, we find that their internal magnetic energy is a viable source of the required driving power. We have estimated upper and lower limits on the power that can possibly be provided by the internal magnetic field of a CME. We find that, on average, the lower limit to the available magnetic power is around 74% of what is required to drive the CMEs, while the upper limit can be as much as an order of magnitude larger.
In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission. Our findings are: (1) The sum of the mean nonthermal energy of flare-accelerated particles ($E_{mathrm{nt}}$), the energy of direct heating ($E_{mathrm{dir}}$), and the energy in coronal mass ejections ($E_{mathrm{CME}}$), which are the primary energy dissipation processes in a flare, is found to have a ratio of $(E_{mathrm{nt}}+E_{mathrm{dir}}+ E_{mathrm{CME}})/E_{mathrm{mag}} = 0.87 pm 0.18$, compared with the dissipated magnetic free energy $E_{mathrm{mag}}$, which confirms energy closure within the measurement uncertainties and corroborates the magnetic origin of flares and CMEs; (2) The energy partition of the dissipated magnetic free energy is: $0.51pm0.17$ in nonthermal energy of $ge 6$ keV electrons, $0.17pm0.17$ in nonthermal $ge 1$ MeV ions, $0.07pm0.14$ in CMEs, and $0.07pm0.17$ in direct heating; (3) The thermal energy is almost always less than the nonthermal energy, which is consistent with the thick-target model; (4) The bolometric luminosity in white-light flares is comparable with the thermal energy in soft X-rays (SXR); (5) Solar Energetic Particle (SEP) events carry a fraction $approx 0.03$ of the CME energy, which is consistent with CME-driven shock acceleration; and (6) The warm-target model predicts a lower limit of the low-energy cutoff at $e_c approx 6$ keV, based on the mean differential emission measure (DEM) peak temperature of $T_e=8.6$ MK during flares. This work represents the first statistical study that establishes energy closure in solar flare/CME events.
Observations of the solar corona with the Large Angle Spectrometric Coronograph (LASCO) and Extreme ultraviolet Imaging Telescope (EIT) instruments on the Solar and Heliospheric Observatory (SOHO) provide an unprecedented opportunity to study coronal mass ejections (CMEs) from their initiation through their evolution out to 30 rsun. The objective of this study is to gain an understanding of the source regions from which the CMEs emanate. To this end, we have developed a list of 32 CMEs whose source regions are located on the solar disk and are well observed in EIT 195 {AA} data during the period from so lar minimum in January 1996 through the rising part of the cycle in May 1998. We compare the EIT source regions with photospheric magnetograms from the Michelson Doppler Imager (MDI) instrument on SOHO and the NSO/Kitt Peak Observatory and also with H$alpha$ data from various sources. The overall results of our study show that 41% of the CME related transients observed are associated with active regions and have no prominence eruptions, 44% are associated with eruptions of prominences embedded in active regions and 15% are associated with eruptions of prominences outside active regions. Those CMEs that do not involve prominence eruptions originate in active regions both with and without prominences. We describe 6 especially well observed events. These case studies suggest that active region CMEs (without eruptive prominences) are associated with active regions with lifetimes between 11--80 days. They are also often associated with small scale emerging or cancelling flux over timescales of 6--7 hours. CMEs associated with active region prominence eruptions, on the other hand, are typically associated with old active regions with lifetimes $sim$ 6-7 months.
The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coronal line intensity, Doppler shift and line width simultaneously in a large field of view. By studying the Doppler shift and line width we may explore more of the physical processes of CME initiation and propagation. Here we identify a list of CMEs observed by CoMP and present the first results of these observations. Our preliminary analysis shows that CMEs are usually associated with greatly increased Doppler shift and enhanced line width. These new observations provide not only valuable information to constrain CME models and probe various processes during the initial propagation of CMEs in the low corona, but also offer a possible cost-effective and low-risk means of space weather monitoring.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا